
SOLVING OF CONSTRAINT SATISFACTION PROBLEM

Ondřej Čekan, Marcela Šimková
Doctoral Degree Programme (1,3), FIT BUT

E-mail: icekan@fit.vutbr.cz, isimkova@fit.vutbr.cz

Supervised by: Zdeněk Kotásek
E-mail: kotasek@fit.vutbr.cz

Abstract: The goal of this paper is to find a suitable solver for Coverage Directed Test Generation
that is one of the functional verification techniques. In order to do this, we summarized information
about the Constraint Satisfaction Problem. The problem consists of finding a solution (assignments
for variables) that must satisfy certain constraints. Moreover, we created a survey about existing
constraint solvers and compare their pros and cons. In the final part of the paper we propose a
solution how to integrate an appropriate constraint solver into the process of test generation.

Keywords: Constraint solver, Constraint Satisfaction Problem, Coverage Directed Test Generation

1 INTRODUCTION

These days, more and more emphasis is given to the testing of the accuracy of the circuit’s behavior.
Today’s integrated circuits are very large and complex, so the earlier techniques used for testing the
correctness of hardware are not sufficient. Number of new techniques and tools that are intended
to detect errors in the circuit are being developed. Errors can be caused by faults in the design or
manufacture. In the foreground is a notion of functional verification which is used by large companies
such as IBM, Cadence, Synopsys or Mentor Graphics [2].

The basis of functional verification is a reference model [8] which performs the function according
to the specification and its output is then compared with the tested circuit. An important element
described in this article is a generator of test vectors that generates inputs for the verified circuit. These
must comply with certain constraints. The outputs of this component are essential to thoroughly test
the circuit. It is profitable to generate test vectors automatically and accurately. The main principles
of such generator is described in Section 2. Section 3 focuses on the Constraint Satisfaction Problem
(CSP) whose purpose is to find values of variables that satisfy some restrictive conditions. Section 4
shows several clues how to solve the CSP. It also describes constraint solving and typical algorithms.
Section 5 proposes our solution for generating test vectors and some concluding remarks.

2 COVERAGE DIRECTED TEST GENERATION

Coverage Directed Test Generation (CDTG) [1] [7] is one of the latest techniques for the verifica-
tion of large designs. This method generates test vectors according to the defined conditions and
limitations which are called constraints. The main challenge for generating test vectors is to achieve
maximal coverage of circuit functions. As some features of the circuit may still remain unverified,
it is necessary to specify additional constraints. Therefore, the CDTG guide us to create these con-
straints from the coverage analysis in order to achieve as largest coverage as possible. Thus, also the
uncovered portion of the circuit can be verified as is shown in Figure 1.

Although various CDTG techniques are used in different technologies developed by different groups
independently, they contain two common parts: Constraint model/language and Constraint solver. To
describe the restrictive conditions, we can use a constraint model. To find the solution or solutions
for these constraints, we can use constraint solver engine.

Constraint solver
Simulator

(design under test)

Coverage directed
constraint generator

Coverage report

Solution/Test case

CSP specification

Figure 1: Coverage directed constraint random test generation.

By introducing CDTG we can gain two significant advantages. There is a possibility that the uncov-
ered scenarios will be covered and a higher level of coverage will be achieved. The second advantage
is that certain scenarios will be tested multiple times with different inputs.

Most problems in computer science that must satisfy certain constraints are special cases of the CSP
or at least, they can be transformed into it.

3 CONSTRAINT SATISFACTION PROBLEM

Constraint Satisfaction Problem (CSP) [1] [4] [5] is a general mathematical problem defined as a
set of variables that can take values from a finite and discrete domain and a set of constraints. The
constraint is defined on a subset of variables and determines values from the domain that a variable
can take. The result is a solution of one or all evaluations of variables so that the constraints are
satisfied.

Among the typical examples of CSPs are N Queens problem, Map-Coloring problem (these two
problems are described in the following text), Car sequencing problem, Magic Square, Social Golfers
and more.

The N Queens Problem

The N Queens problem [4] is known from the chess game. On the playing board with dimensions
NxN it is necessary to place the N chess queens so that diagonally, horizontally and vertically they do
not jeopardize each other. The Queen can move in the same row, column or diagonal. The problem of
the placement of the queens on the board, that have to fulfill certain restrictions, is the typical example
of CSP.

The Map-Coloring Problem

The Map-Coloring problem [5] can also be solved as a CSP. The problem consists of assigning colors
(from a domain) to each region on the map so that two adjacent regions do not have the same color.
This problem can be transformed into the constraint graph, which is equivalent to the CSP. Each re-
gion of graph represents one variable and their mutual borders represent relationships and constraints
between them.

4 CONSTRAINT SOLVER

As stated above, the solution to the CSP is assigning a value to each variable so that all imposed
constraints are simultaneously satisfied. This raises the question whether there is a solution to a given
CSP? This is the so-called NP-complete [3] decision problem, therefore, it cannot be decided in a
deterministic polynomial time. An environment for solving the CSP is called Constraint Solver.

A scheme of a constraint solver is shown in Figure 2. It reflects the main principle of how the most
solvers work. The first element only pre-processes a task of the CSP. The search element works on

the backtracking principle in the conjunction with the constraint propagation. Assigning a value to a
variable is statical or is based on a heuristic and then a depth-first search or other searching algorithm
can be performed. Backtracking is applied when a conflict in an assignment is detected. The simplify
element contains a queue of constraints and performs their promotion. On the basis of this promotion,
values are taken from the domain of variables.

There are several techniques that are used for solving the CSP hence several types of them are de-
scribed in the next paragraph.

Pre-process

Search Simplify

Solution

CSP specification

Heuristic

Queue
of constraints
to propagate

Variable
domains

Propagate
numerical
constraint

Propagate
arbitrary

constraint

Propagate
logical

constraint

Propagate
allDifferent
constraint

Simplify

…..

Add
constraints
to queue

Figure 2: Scheme of a constraint solver.

Generate-and-Test

This method is the simplest possible way to solve the CSP. Generate-and-test [5] method system-
atically generates all possible combinations of values for the variables and then checks whether all
constraints are satisfied. If they are, the solution was found, if not, it generates the next combina-
tion. The number of combinations that this solution can generate is equal to the size of the Cartesian
product of the variable domains.

Backtracking

The second option which will be shown is the method called backtracking [5]. This method is known
and used for decades. In contrast to the previous method, this method does not assign values to
all variables directly but initializes variables sequentially and continuously verifies the validity of
the restrictions. If any constraint is violated, assignments of variables are returned to the last valid
instance that has another alternative assignment. Backtracking performs a depth-first search. Thanks
to backtracking, it is possible to partially eliminate some of the violating passages thereby it reduce
the subspace of the Cartesian product.

Although this method is better than the previous one, there is a problem with exponential time com-
plexity for non-trivial problems. Therefore, there are other methods based on backtracking with some
extensions and improvements known as intelligent backtracking or systematic backtracking.

Propagating Constraints

Another frequently used method for finding solution is the method based on the Propagating Con-
straints [5] [6]. The Propagating Constraints method shows another way to solve the CSP. This
method is based on two principles. The first principle is the propagation which aims to reduce the
search tree in a way that removes values that do not contribute to the solution. The second principle is
to interleave enumeration (also called splitting or branching) that creates a new branch in the search

tree. Enumeration always creates two branches, one branch for a valid instance variables (x = a) and
the other branch for an invalid instance (x 6= a). The second branch is used in the case of a constraint
violation at the first branch and serves as an alternative way to represent backtracking.

Hybrid Approaches

There are many other techniques [6] that include various combinations of previous approaches and
other innovative approaches that belong to the hybrid techniques.

4.1 EXISTING SOLVERS

This section shows some existing solvers which are open source and still under development. There
is no space for implementation details, only the basic characteristics of selected solvers are demon-
strated. This section is based on references [3] and [4].

ECLiPSe

ECLiPSe is one of the oldest environments for solving the CSP. It is programmed in Prolog, there-
fore, it does not reach high performance as similar systems programmed in modern programming
languages. In contrast, it is possible to specify the problem better.

Minion

Minion is a constraint solver based on the Propagating Constraints approach. It is written in C++
language. The main advantages of Minion are speed and efficiency in solving many problems and it
requires only one input file to run. In contrast to other solvers, Minion does not require additional
piece of code.

5 THE GOALS OF THE FUTURE RESEARCH AND CONCLUSION

The main purpose of this survey is to compare existing constraint solvers and select the proper one
for our future research. As was shown above, each solver is unique in some way. We intend to apply a
constraint solver in the process of CDTG in functional verification of electromechanical applications
in order to verify and increase their correctness and reliability. In particular, when functional verifi-
cation is used for checking system properties, it is necessary to create as many testing scenarios (they
consist of several variables) as possible in a restricted time. An important condition is that they need
to cover all important system properties.

We propose CDTG with a probabilistic model as shown in Figure 3. The basic element is the Con-
straint Solver which will work with two types of constraints. The first are design constraints that
specify restrictions on input values for a specific hardware system. A typical example of a design
constraint is following: let’s suppose a signal XY with 2-bit width. There are four values that XY
can take: 00, 01, 10, 11. However, the combination 11 is invalid, because the system doesn’t use
it. Therefore, by a design constraint we can tell a generator not to produce invalid data for XY with
value 11. In contrast to these type of constraints, we define probabilistic constraints. These con-
straints are generated from the probabilistic model. This model defines the probability that a specific
value will be assigned to a specific input signal (in order to target coverage holes, some values are
more prefered than others) based on the coverage report. If the probability of some value is zero or
too low, the constraint solver can be optimized as it does not take some parts of the search tree into
account. Figure 3 shows an example of a probabilistic model for Arithmetic Logic Unit (ALU). Input
signal OP (operation) can be set to different values that represent different operations (ADD, SUB,
MUL, etc.). As you can see from the picture, according to our method, every operation has its own
probability that it will be generated in the next run of CDTG.

In our opinion, backtracking and constraint propagation cannot be significantly accelerated and more-
over, there is no more space for further development because solvers on these approaches are already
created. We expect that our solver will have a hybrid nature due to the probabilistic model (it will

take into account the probability in generating tests) and will combine features of existing solvers and
probabilistic methods.

CONSTRAINT SOLVER

Design
constraints

PROBABILISTIC MODEL

Probabilistic
constraints

 SIMULATION
 (DRIVER, DUT, MONITOR)

COVER.
REPORT

TEST

VECTOR

. . .
ADD|SUB|MUL|.. .

21% 8% 12% X% X% X% X% X%

OP A

EXAMPLE OF A PROBABILISTIC MODEL FOR ALU

Figure 3: A scheme of the CDTG with a probabilistic model.

The current trend in research is developing a solver that is able to find a solution for complex problems
with regard to the computation time. To meet these requirements, hybrid models are appropriate. A
key priority for effective functional verification is developing the constraint solver for CDTG which
is able to achieve maximum coverage of features (functionality, code, structure, etc.) of a system.

We have introduced a new method for CDTG that utilizes a probabilistic model. To the best of our
knowledge, there doesn’t exist any similar work. This article represents a survey at the beginning of
Ph.D. studies, therefore, it is rather theoretical and shows future steps in our research.

ACKNOWLEDGEMENT

This work was supported by the following projects: BUT project FIT-S-14-2297, National COST
LD12036, research project No.MSM 0021630528, project IT4Innovations Centre of Excellence (ED1.
1.00/02.0070), COST Action project “Manufacturable and Dependable Multicore Architectures at
Nanoscale”, and internal grant “FIT-S-11-1”.

REFERENCES

[1] George, M., Ait Mohamed, O.: Performance analysis of constraint solvers for coverage directed
test generation. In: Microelectronics (ICM), 2011 International Conference on, pp. 1–5 (2011).
DOI 10.1109/ICM.2011.6177404

[2] Graphics, M.: Verification academy - the most comprehensive resource for verification training
(2013). URL www.verificationacademy.com

[3] Jefferson, C., et al.: The Minion Manual, Minion Version 0.8.1 (2009). [online, available at
http://minion.sourceforge.net/files/Manual081.pdf; accessed 06-August-2009]

[4] Kotthoff, L.: Constraint Solvers: An Empirical Evaluation of Design Decisions. ArXiv e-prints
(2010)

[5] Kumar, V.: Algorithms for constraint satisfaction problems: A survey. AI MAGAZINE 13(1),
32–44 (1992)

[6] Monfroy, E., Castro, C., Crawford, B.: Using local search for guiding enumeration in constraint
solving. In: J. Euzenat, J. Domingue (eds.) Artificial Intelligence: Methodology, Systems, and
Applications, Lecture Notes in Computer Science, vol. 4183, pp. 56–65. Springer Berlin Heidel-
berg (2006). DOI 10.1007/11861461_8. URL http://dx.doi.org/10.1007/11861461_8

[7] Shen, H., Wang, P., Chen, Y., Guo, Q., Zhang, H.: Designing an effective constraint solver
in coverage directed test generation. In: Embedded Software and Systems, 2009. ICESS ’09.
International Conference on, pp. 388–395 (2009). DOI 10.1109/ICESS.2009.39

[8] Tasiran, S., Keutzer, K.: Coverage metrics for functional validation of hardware designs. Design
Test of Computers, IEEE 18(4), 36–45 (2001). DOI 10.1109/54.936247

