
DEEP PUSHDOWN TRANSDUCERS AND STATE TRANSLATION
SCHEMES

Peter Solár
Doctoral Degree Programme (5), FIT BUT

E-mail: xsolar05@stud.fit.vutbr.cz

Supervised by: Alexander Meduna
E-mail: meduna@fit.vutbr.cz

Abstract: This paper presents deep pushdown transducers and state translation schemes as two mod-
els which can be used in syntax-directed translation. Deep pushdown transducers are based on deep
pushdown automata. These transducers can expand non-input pushdown symbols deeper in a push-
down. State translation schemes fundamentally work like state grammars but differ in possibility to
produce two different output strings in one derivation.

Keywords: parsing, pushdown automata, deep pushdown automata, state grammars, pushdown trans-
ducers, deep pushdown transducers, syntax-directed translation scheme, state translation scheme

1 INTRODUCTION

If we talk about formal language theory, we usually focus on two core models - grammar and au-
tomaton. In a grammar we aim to generate a string belonging to the language using production rules.
On the other hand, an automaton is supposed to run on a given input sequence and tries to decide
if this input sequence is a string belonging to the language recognized by the automaton. However
there exists other formal models. In this paper, we focus on transducers and translation schemes.
Transducers, simply said, are automata which are enhanced by the possibility to produce some output
string while trying to accept an input string. Likewise, translation schemes are extended versions of
grammars.

This paper presents deep pushdown transducers and state translation schemes as two models which
can be used in syntax-directed translation. Deep pushdown transducers are based on deep pushdown
automata presented by Meduna in 2006 ([7]). State translation schemes are based on state gram-
mars introduced by Kasai in 1970 ([5]). These two models are equivalent and describe the same
infinite hierarchy of languages lying between context-free and context-sensitive languages (see [7]).
Deep pushdown automaton has the possibility to expand a non-input pushdown symbol deeper in its
pushdown, not only on the pushdown top. State grammar is a context-free grammar with additional
mechanism which consists in adding states (similarly to finite automaton). At each derivation step
state grammar is in some state which influences the choice of the next applied production rule. Next
state is included in the production rule.

2 PRELIMINARIES

This paper assumes that the reader is familiar with the theory of automata and formal languages (see
[1], [2], [3] and [6]).

N+ denotes the set of all positive integers. For an alphabet, Σ, Σ∗ represents the free monoid generated
by Σ under the operation of concatenation. The identity of Σ∗ is denoted by ε. A homomorphism f
over V ∗ is a coding if f (A) ∈ {A,ε} for every A ∈V .

A function f : A→ B is called injective (one-to-one) if each element of B appears at most once as the
image of an element of A. A function f : A→ B is called surjective (onto) if f (A) = B. That is, if each
element of B is the image of at least one element of A. A function that is both injective and surjective
is called bijective. A permutation of a set A is a bijective function φ(A) : A→ A.

Set Σ+ = Σ∗ −{ε}. Algebraically, Σ+ is thus the free semigroup generated by Σ under the operation
of concatenation. For a string w ∈ Σ∗, |w| denotes the length of string w. For W ⊆ Σ, occur(w,W)
denotes the number of occurrences of symbols from W in w. al ph(w) denotes the set of symbols
occurring in string w.

A pushdown transducer (see [4]) is a 8-tuple MT = (Q, ΣI , Γ, ΣO, R, s, S, F), where Q is a finite set of
the states, ΣI is an input alphabet, Γ is a pushdown alphabet, ΣO is an output alphabet, ΣI ⊆ Γ, s∈Q is
the start state, S∈ Γ is the start pushdown symbol, F ⊆Q is a set of finite states. Γ and ΣO are pairwise
disjoint. R⊆Q×(ΣI∪{ε})×(Γ∪{ε})×Q×Γ∗×(ΣO∪{ε}). Instead of (p,a,A,q,w,a′)∈ R, where
p,q ∈ Q, a ∈ ΣI , A ∈ Γ−ΣI , w ∈ Γ∗, a′ ∈ ΣO, we usually write r = paA→ qwa′ (r ∈ R) and call r a
rule.

A state grammar (see [5]) is a 5-tuple G = (V,W,T,P,S), where V is a total alphabet, W is a finite set
of states, T ⊆V is an alphabet of terminals, S ∈ (V −T) is the start symbol and P ∈ (W × (V −T))×
(W ×V+) is a finite relation. Instead of (q,A, p,v) ∈ P, we write (q,A)→ (p,v) ∈ P throughout.

For every z ∈ V ∗, set Gstates(z) = {q | (q,B)→ (p,v) ∈ P, where B ∈ (V −T) ∩ al ph(z), v ∈ V+,
q, p∈W}. If (q,A)→ (p,v)∈P, x,y∈V ∗, Gstates(x)∩{q}=∅, then G makes a derivation step from
(q,xAy) to (p,xvy), symbolically written as (q,xAy)⇒ (p,xvy)[(q,A)→ (p,v)] in G. In addition, if n
is a positive integer satisfying occur(xA,V −T)≤ n, we say that (q,xAy)⇒ (p,xvy) [(q,A)→ (p,v)]
is n-limited, symbolically written as (q,xAy) n⇒ (p,xvy) [(q,A)→ (p,v)]. Usually if there is no
possibility of confusion we simplify (q,xAy)⇒ (p,xvy) [(q,A)→ (p,v)] to (q,xAy)⇒ (p,xvy) and
(q,xAy) n⇒ (p,xvy) [(q,A)→ (p,v)] to (q,xAy) n⇒ (p,xvy). In the standard manner we extend⇒ to
⇒m, m≥ 0. Based on⇒m we can define⇒+ and⇒∗. Let n ∈ N+ and α,β ∈ (W ×V) . To express
that every derivation step in α⇒m β, α⇒+ β and α⇒∗ β is n-limited, we write αn⇒m β, αn⇒+ β

and αn⇒∗ β.

The language of G, L(G), is defined as L(G) = {w ∈ T ∗ | (q,S)⇒∗ (p,w), q, p ∈W}. Moreover, we
define for every n ≥ 1, L(G,n) = {w ∈ T ∗ | (q,S) n⇒∗ (p,w), q, p ∈W}. A derivation of the form
(q,S) n⇒∗ (p,w), where q, p ∈W and w ∈ T ∗, represents a successful n-limited generation of w in G.

A deep pushdown automaton (see [7]) is a 7-tuple dM = (Q, Σ, Γ, R, s, S, F), where d is the maximum
depth at which non-input symbol can be expanded, Q is a finite set of the states, Σ is an input alphabet,
Γ is a pushdown alphabet, Σ⊆ Γ, Γ−Σ contains a special bottom symbol denoted by #, s ∈ Q is the
start state, S∈Γ is the start pushdown state, F ⊆Q is a set of finite states. Sets N, Q and Γ are pairwise
disjoint. R ⊆ (N+×Q× (Γ− (Σ∪{#}))×Q× (Γ−{#})+)

⋃
(N+×Q×{#}×Q× (Γ−{#})∗{#}).

Instead of (m, p,A,q,w)∈ R, where m≤ d, p,q∈Q, A∈ Γ−Σ, w∈ Γ+, we usually write r = mpA→
qw and call r a rule.

A configuration of the deep pushdown automaton dM is a triple Q×Σ∗× (Γ−{#})∗{#}. Let χ be
a set of all configurations of automaton dM and let x,y ∈ χ be two configurations. x ` y is a move
between these two configuration. If x = (p,au,az),y = (q,u,z), where p,q ∈ Q,a ∈ Σ,u ∈ Σ∗,z ∈ Γ∗,
then dM pops its pushdown from x to y, x p` y. dM expands its pushdown if x = (p,au,wAz),y =
(q,au,wvz),r = p(A) ` q(v) ∈ R, accordingly to the rule r. Symbolically x e` y [p(A)→ q(v)] or
x e` y if there is only one usable rule. In the standard manner we can extend p`, e` and ` to p`m,
e`m and `m, respectively, for m ≥ 0. Then based on p`m, e`m and `m, define p`+, p`∗, e`+, e`∗,
`+ and `∗.

Let dM be of maximal depth d ∈ N. We define a language accepted by dM as L(dM) = {w ∈
Σ∗ : (s,w,S#) `∗ (f ,ε,#) ∈ dM with f ∈ F}, language accepted by dM by empty pushdown as
LemptyPD(dM) = {w ∈ Σ∗ : (s,w,S#) `∗ (q,ε,#) ∈ dM with q ∈ Q} and language accepted by dM
by entering final state as L f inal(dM) = {w ∈ Σ∗ : (s,w,S#) `∗ (f ,ε,v#) ∈ dM with f ∈ F,v ∈ Γ∗}.

For every state grammar G and for every n≥ 1, there exists a deep pushdown automaton of depth n,
nM, such that L(G,n) = L(nM).

3 DEFINITIONS

3.1 STATE TRANSLATION SCHEME

As an analogy to syntax-directed translation schemes used in translation of context-free languages we
can define state translation schemes as an extension of state grammars that describes the process of
translating input strings into output strings. The scheme associates one production rule of the target
state language to each production rule of the source state language.

A state translation scheme is a 6-tuple τ = (V,W,TI,TO,P,S), where V is a total alphabet, W is a finite
set of states, TI ⊆V is an alphabet of input terminals, TO ⊆V is an alphabet of output terminals, N =
V − (TI ∪TO), S ∈ N is the start symbol, N̄ ⊆ N and P ∈ (W × (N))× (W × (N̄∪TI)

∗× (φ(N̄)∪TO)
∗)

is a finite relation. Instead of (p,A,q,x,y) ∈ P, we write (p,A)→ (q,x,y) ∈ P throughout. For every
z ∈ (N ∪ TI)

∗, set τstates(z) = {p | (p,B)→ (q,x,y) ∈ P, where B ∈ N ∩ al ph(z), x ∈ (N ∪ TI)
+,

y ∈ (N∪TO)
+, p,q ∈W}.

A translation form is a pair (u,v) where u is a sentential form of the underlying grammar and v is the
translation resulted by the derivation of u.

Let ϑ(τ) be a translation ϑ defined by state translation scheme τ, ϑ(τ) = {(x,y) : (S,S)⇒∗ (x,y),
x ∈ TI, y ∈ TO}.

3.2 DEEP PUSHDOWN TRANSDUCER

The deep pushdown transducer differs from the standard pushdown transducer by possibility to ex-
pand non-input pushdown symbols deeper in the pushdown.

A deep pushdown transducer is an 8-tuple dMT = (Q, ΣI , Γ, ΣO, R, s, S, F), where d is the maximum
depth at which non-input symbol can be expanded, Q is a finite set of the states, ΣI is an input alphabet,
Γ is an pushdown alphabet, ΣI ⊆ Γ, ΣO is an output alphabet, ΣO 6⊆ Γ, Γ−ΣI contains a special bottom
symbol denoted by #, s ∈ Q is the start state, S ∈ Γ is the start pushdown symbol, F ⊆ Q is a set of
finite states. Sets N, Q, Γ and ΣO are pairwise disjoint.

R ⊆ (N+×Q× (Γ− (ΣI ∪{#}))×Q× (Γ−{#})+× (ΣO ∪{ε}))
⋃
(N+×Q× (Γ− (ΣI ∪{#}))×

Q× (Γ−{#})∗×ΣO)
⋃
(N+×Q×{#}×Q× ((Γ−{#})∗{#})× (ΣO∪{ε}))

⋃
(N+×Q×{#}×Q×

(((Γ−{#})∗{#})∪{ε})×ΣO). Instead of (m, p,A,q,w,a′) ∈ R, where m ≤ d, p,q ∈ Q, A ∈ Γ−ΣI ,
w ∈ Γ+, a′ ∈ ΣO∪{ε} we usually write r = mpA→ qwa′ and call r a rule.

A configuration of the deep pushdown transducer dMT is a 4-tuple Q× (ΣI)
∗× (Γ−{#})∗{#}×

(ΣO)
∗. Let χ be a set of all configurations of deep pushdown transducer dMT and let x,y ∈ χ be two

configurations. x` y is a move between these configuration. If x=(p,au,az,b),y=(q,u,z,bc), where
p,q ∈ Q,a ∈ ΣI,u ∈ (ΣI)

∗,z ∈ Γ∗,b,c ∈ (ΣO)
∗, then dMT pops its pushdown from x to y, x p` y. dMT

expands its pushdown if x = (p,au,wAz,b),y = (q,au,wvz,bc),r = p(A)→ q(v)c ∈ R accordingly to
the rule r, symbolically written x e` y[p(A)→ q(v)c] or x e` y if there is only one usable rule. In the
standard manner we can extend p`, e` and ` to p`m, e`m and `m, respectively, for m ≥ 0. Then
based on p`m, e`m and `m, define p`+, p`∗, e`+, e`∗, `+ and `∗.

We can define a language accepted by dMT as LAcc(dMT) = {w ∈ (ΣI)
∗ : (s,w,S#,ε) `∗ (f ,ε,#,u) ∈

dMT with f ∈F,u∈ (ΣO)
∗} and a language generated by dMT as LGen(dMT)= {u∈ (ΣO)

∗ : (s,w,S#,ε)
`∗ (f ,ε,#,u) ∈ dMT with f ∈ F,w ∈ (ΣI)

∗}. In the same manner we can define a language accepted
by dMT by empty pushdown as LAcc

emptyPD(dMT) = {w ∈ (ΣI)
∗ : (s,w,S#,ε) `∗ (q,ε,#,u) ∈ dMT with

u ∈ (ΣO)
∗}, a language generated by dMT by empty pushdown as LGen

emptyPD(dMT) = {u ∈ (ΣO)
∗ :

(s,w,S#,ε) `∗ (q,ε,#,u) ∈ dMT with w ∈ (ΣI)
∗}, a language accepted by dMT by entering the fi-

nal state as LAcc
f inal(dMT) = {w ∈ (ΣI)

∗ : (s,w,S#,ε) `∗ (f ,ε,v#,u) ∈ dMT with f ∈ F,v ∈ Γ∗,u ∈
(ΣO)

∗} and a language generated by dMT by entering the final state as LGen
f inal(dMT) = {u ∈ (ΣO)

∗ :
(s,w,S#,ε) `∗ (f ,ε,v#,u) ∈ dMT with f ∈ F,v ∈ Γ∗,w ∈ (ΣI)

∗}.

According to theorems presented in [8] we can assume LAcc(dMT) = LAcc
emptyPD(dMT).

Let ϑ(dMT) be a translation ϑ defined by deep pushdown transducer dMT , ϑ(dMT) = {(x,y) :
(s,x,S,ε) `∗ (q,ε,z,y), x∈ΣI, y∈ΣO, z∈ (Γ−{#})∗ {#},q∈Q} and ϑe(dMT) a translation ϑ defined
by deep pushdown transducer with empty pushdown dMT , ϑ(dMT) = {(x,y) : (s,x,S,ε) `∗ (q,ε,ε,y),
x ∈ TI, y ∈ TO}

4 RESULTS

Theorem 1 Let τ= (V,W,TI,TO,P,S) be a state translation scheme. Then there exists deep pushdown
transducer dMT = (Q, ΣI , Γ, ΣO, R, s, S, F) such ϑ(dMT) = ϑ(τ).
Proof Let τ = (V,W,TI,TO,P,S) be a state translation scheme. Without loss of generality we can
assume that TI ∩TO = /0. Set ΣI = TI , ΣO = TO, N = V − (TI ∪TO) and Γ = V ∪{#}. Further define
homomorphism ξ over ({#}∪V)∗ as ξ(A) = A for each A ∈ {#}∪N and h(a) = ε for each a ∈V −N.

Then we can construct deep pushdown transducer dMT = (Q, ΣI , Γ, ΣO, R, s, S, F), where

Q = {s}∪{〈p,u〉 : p ∈W,u ∈ pre f ix(N∗{#}d ,d), |u| ≤ d},

F = {〈p,u〉 : p ∈W,u ∈ pre f ix({#}d ,d), |u| ≤ d}

and R is built using the following steps:

1. set R = /0

2. add 1 s S→ 〈p,S〉S ε to R for each rule pS→ qx,y ∈ P, p,q ∈W, x ∈ Σ
+
I , y ∈ Σ∗O

3. add |uA| 〈p,uAv〉A→ 〈q, pre f ix(uξ(x)v,d)〉 x0y0B1x1y1. . .Bkxkyk ε to R for each pA→ qx,y ∈
P, x = x0B1x1. . .Bkxk, y = y0B1y1. . .Bkyk, p,q ∈ W, k ≥ 0, 1 ≤ j ≤ k, 0 ≤ i ≤ k, A,B j ∈
N,〈p,uAv〉 ∈ Q, xi ∈ Σ∗I , yi ∈ Σ∗O, u ∈ N∗, v ∈ N∗{#}∗, |uAv|= d, p /∈ τstates(u)

4. add |uA| 〈p,uv〉A→ 〈q,uAv〉A ε to R for each A ∈ N, p ∈W,u ∈ N∗,v = {#}∗, |uv|= d−1, p /∈
Gstates(u)

5. add 1 q a→ q ε ε to R for each a ∈ ΣI and each q ∈ Q

6. add 1 q ε→ q ε b to R for each b ∈ ΣO and each q ∈ Q

Basic idea: Deep pushdown transducer dMT simulates n-limited derivations in τ. It always records the
first d nonterminals occuring in the current sentential form. If there appear less than d nonterminals in
the sentential form, it completes them to d with symbols #). Transducer dMT simulates a derivation
step in the pushdown and records the newly generated nonterminals in the state. When scheme τ

successfully completes the generation of terminal strings, transducer dMT completes reading input
string and generating output string, empties its pushdown and enters the final state.

Theorem 2 Let dMT = (Q, ΣI , Γ, ΣO, R, s, S, F) be a deep pushdown transducer. Then there exists
state translation scheme τ = (V,W,TI,TO,P,S) such ϑ(τ) = ϑ(dMT).
Proof Basic idea: State translation scheme τ simulates the application of a deep pushdown transducer
rule using left-to-right scan of the sentential form until it reaches the ith occurrence of nonterminal. If
this occurrence equals to nonterminal on the left-hand side of the simulated rule, it replaces this with
its right-hand side. Then it returns to the beginning of the sentential form.

5 CONCLUSION

In this paper, there were presented state translation schemes and deep pushdown transducers as two
possible models used in syntax-directed translation of languages generated by (n-limited) state gram-
mars. These models work exactly like models they are based on but have mechanisms to generate an
output sentential form. In this paper, there were presented main ideas of conversions between these
models.

There are several open problems regarding to this paper. The presented deep pushdown transduc-
ers work nondeterministically. This problem prevents the use in practice where it is crucial to use
deterministic models. We considered only a true pushdown expansion and so presented transducers
do not allow replacing pushdown symbols with an empty string. What will be the language family
accepted by the transducer with erasing rules? Also languages generated by presented transducers
and translation schemes should be more investigated and classified.

ACKNOWLEDGEMENT

This work was partially supported by the BUT IGA grant FIT-S-14-2299 Research and application of
advanced methods in ICT.

REFERENCES

[1] Aho, A. V., Ullman, J. D.: The Theory of Parsing, Translation and Compiling, Volume I: Parsing,
Prentice Hall, Englewood Clifs, New Jersey, 1972, ISBN 0139145567

[2] Autebert, J., Berstel, J., Boasson, L.: Context-free languages and pushdown automata. In: Rozen-
berg, G., Salomaa, A., (eds.) Handbook of Formal Languages, vol. 1. Springer, 1997, ISBN 978-
3540604204

[3] Dassow, J., Paŭn, G.: Regulated Rewriting in Formal Language Theory. AkademieVerlag, Berlin,
1989, ISBN 978-0387514147

[4] Gurari, E.: An Introduction to the Theory of Computation, Computer Science Press, 1989, ISBN
0-7167-8182-4

[5] Kasai, T.: An hierarchy between context-free and context-sensitive languages. In: Journal of
Computer and System Sciences vol. 4, pp. 492–508, 1970, ISSN 0022-0000

[6] Meduna, A.: Automata and Languages: Theory and Applications. Springer, London, 2000, ISBN
978-1852330743

[7] Meduna, A.: Deep Pushdown Automata. In: Acta informatica, vol. 98, pp. 114–124, 2006, ISSN
0001-5903

[8] Solár, P.: Deep Pushdown Transducers and Parallel Deep Pushdown Transducers. In: Proceedings
of the 19th Conference STUDENT EEICT 2013, pp. 207-211, VUT v Brně, Brno, 2013, ISBN
978-80-214-4695-3

