
ON DETERMINISM IN STATE-SYNCHRONIZED AUTOMATA
SYSTEMS

Jiří Kučera

Doctoral Degree Programme (1), FIT BUT

E-mail: xkucer28@stud.fit.vutbr.cz

Supervised by: Alexander Meduna

E-mail: meduna@fit.vutbr.cz

Abstract: In this paper is studied the determinism in state-synchronized automata systems of degree

n. It will be shown that every recursively enumerable language can be accepted by corresponding

deterministic state-synchronized automata system containing at least two pushdown automata.

Keywords: determinism, deterministic state-synchronized automata system, DSCAS

1 INTRODUCTION

From the pragmatic point of view, the studying of determinism in theoretical computer science is

crucially important because it is much easier to implement deterministic behaviour than handling the

nondeterministic one in real applications. The nondeterministic state-synchronized automata systems

were defined and investigated in [1] and it was proved that such the systems containing two or more

pushdown automata are Turing complete. Furthermore, Example 4.6 in [1] demonstrates that deter-

ministic variants of these systems are suitable for accepting languages which are not context-free.

In this paper we firstly recall the definition of state-synchronized automata system. Then, the complete

proof of coincidence of the family of recursively enumerable languages with the family of languages

accepted by deterministic state-synchronized automata systems containing at least two pushdown au-

tomata will be given. Finally, the paper is closed by discussion about the practical usage of mentioned

systems and also the further investigation is outlined.

2 PRELIMINARIES AND DEFINITIONS

It is assumed that the reader is familiar with the basic notions of formal language theory [2]. Let S

be a set. Then, the cardinality of S is denoted by card(S). Let Σ be an alphabet. Then, Σ∗ represents

the free monoid generated by Σ under the operation of concatenation, with ε as the unit of Σ∗. Let ρ

be a (binary) relation. Then, by ρ∗ is denoted the reflexive and transitive closure of ρ, and by ρi is

denoted the ith power of ρ, i ≥ 0. Let w be a word over Σ. Then, the set of all subwords contained in

w is denoted by subword(w). By RE we denote the family of recursively enumerable languages.

A pushdown automaton (PDA), M, is a septuple M = (Q,Σ,Γ,R,s,S,F), where Q is a finite set of

states, Σ is an input alphabet, Γ is a finite set of symbols on pushdown, Q, Σ, and Γ are pairwise

disjoint, R ⊆ (Γ∪{ε})×Q× (Σ∪{ε})×Γ∗×Q is a finite set of rules, (A, p,a,x,q) ∈ R
def
⇐⇒ Apa →

xq ∈ R, s ∈ Q is the initial state, S ∈ Γ∪{ε} is the initial word on pushdown, and F ⊆ Q is a set of

final states. In further text, we use lhs(r) = u and rhs(r) = v to denote the left-hand side of r and

the right-hand side of r for some r = u → v ∈ R, respectively. A configuration of M is a word from

Γ∗QΣ∗. The relation of direct move ⊢M⊆ Γ∗QΣ∗×Γ∗QΣ∗ is defined as follows: if u ∈ Γ∗, w ∈ Σ∗,

and Apa → xq ∈ R, then uApaw ⊢M uxqw in M. The language accepted by M, L(M), is defined as

L(M) = {w ∈ Σ∗ | Ssw ⊢∗
M f , f ∈ F}. The M is said to be a finite automaton (FA) if Γ = /0.

A two-pushdown automaton (2PDA), M, is defined as a septuple M = (Q,Σ,Γ,R,s,S,F), where Q,

Σ, s, and F are defined as in PDA, Γ is a pushdown alphabet, S ∈ Γ is the initial symbol on both

pushdowns, and R ⊆ Γ×Γ×Q× (Σ∪{ε})×Γ∗×Γ∗×Q is a finite set of rules, (A,B, p,a,x,y,q) ∈

R
def
⇐⇒ A#Bpa → x#yq ∈ R, where # /∈ Σ∪Γ∪Q. A configuration of M is a word from Γ∗{#}Γ∗QΣ∗.

The relation of direct move ⊢M⊆ Γ∗{#}Γ∗QΣ∗ ×Γ∗{#}Γ∗QΣ∗ is defined as follows: if u,v ∈ Γ∗,

w ∈ Σ∗, and A#Bpa → x#yq ∈ R, then uA#vBpaw ⊢M ux#vyqw in M. The language accepted by M,

L(M), is defined as L(M)= {w∈ Σ∗ | S#Ssw ⊢∗
M # f , f ∈F}. If for every rule A#Bpa→ x#yq ∈R holds

card({α → γ ∈ R | α ∈ subword(A#Bpa)}) = 1, then M is a deterministic two-pushdown automaton

(D2PDA). By L (2PDA) is denoted the family of languages accepted by 2PDA, analogously for

D2PDA.

Definition 2.1 (State-synchronized automata system). A state-synchronized automata system of de-

gree n (SCAS(t1,t2,...,tn)), Γ, is defined as an (n + 1)-tuple Γ = (M1,M2, . . . ,Mn,Ψ), where Mi =
(Qi,Σ,Γi,Ri,si,Si,Fi), called ith component of Γ, is a ti, ti ∈ {FA,PDA}, for all 1 ≤ i ≤ n, and

Ψ ⊆ Q1Q2 . . .Qn is a control language of Γ. Moreover, card (
⋃n

i=1 Qi) = ∑n
i=1 card(Qi). By Ψ f

we denote Ψ∪ F1F2 . . .Fn. A configuration of Γ is an n-tuple (χ1,χ2, . . . ,χn), where χi is a con-

figuration of Mi, for all 1 ≤ i ≤ n. Given a two configurations of Γ, α = (χ1,χ2, . . . ,χn) and α′ =
(χ′

1,χ
′
2, . . . ,χ

′
n), the relation of direct move in Γ, ⊢Γ, is defined as follows: if for every 1 ≤ i ≤ n

holds χi ⊢Mi
χ′

i in Mi, and π1(χ1)π2(χ2) . . .πn(χn) ∈ Ψ, π1(χ
′
1)π2(χ

′
2) . . .πn(χ

′
n) ∈ Ψ f , where πi is

a homomorphism from Γ∗
i QiΣ

∗ to Qi such that for qi ∈ Qi holds πi(qi) = qi, otherwise πi(a) = ε,

for all 1 ≤ i ≤ n, then α ⊢Γ α′ in Γ. The language accepted by Γ, L(Γ), is defined as L(Γ) = {w ∈
Σ∗ | (S1s1w,S2s2, . . . ,Snsn) ⊢

∗
Γ (f1, f2, . . . , fn)}. The family of languages accepted by SCAS(t1,t2,...,tn) is

denoted by L (SCAS(t1,t2,...,tn)).

Given some SCAS(t1,t2,...,tn), Γ, define a set of all mappings from {1,2, . . . ,n} to
⋃n

i=1 Ri, RΓ, such that

α ∈ RΓ iff for all 1 ≤ i ≤ n holds α(i) ∈ Ri. Furthermore, define two other mappings, πl and πr, from

RΓ to Q1Q2 . . .Qn as follows: πl(α) = π1(lhs(α(1)))π2(lhs(α(2))) . . .πn(lhs(α(n))) and analogously

πr(α) = π1(rhs(α(1)))π2(rhs(α(2))) . . .πn(rhs(α(n))).

Definition 2.2 (Deterministic SCAS). Let Γ be an SCAS(t1,t2 ,...,tn). Then Γ is said to be deterministic

(DSCAS) if for every mapping α ∈ RΓ, such that πl(α) ∈ Ψ and πr(α) ∈ Ψ f , holds card({α′ ∈ RΓ |
πl(α

′) ∈ Ψ,πr(α
′) ∈ Ψ f , lhs(α′(i)) ∈ subword(lhs(α(i))),1 ≤ i ≤ n}) = 1. By L (DSCAS(t1,t2,...,tn))

we denote the family of languages accepted by DSCAS(t1,t2,...,tn).

3 THEORETICAL RESULTS

Theorem 3.1. L (DSCAS(PDA,PDA)) = RE.

Proof of Theorem 3.1. Inclusion L (DSCAS(PDA,PDA)) ⊆ RE follows directly from Church-Turing

thesis. To prove that RE ⊆ L (DSCAS(PDA,PDA)), we use the result from [2] that L (D2PDA) = RE,

and present here an algorithm that converts every D2PDA M̂ to an equivalent DSCAS(PDA,PDA) Γ, so

L(M̂) = L(Γ).

Given D2PDA M̂ = (Q̂,Σ, Γ̂, R̂, ŝ, Ŝ, F̂), construct a DSCAS(PDA,PDA) Γ = (A,B,Ψ), where component

A = (QA,Σ, Γ̂,RA,s, Ŝ,FA) and component B = (QB,Σ, Γ̂,RB, s̄, Ŝ,FB), such that L(M̂) = L(Γ), by the

following way:

1. Set QA = /0, QB = /0, and Ψ = /0.

2. For every rule r = A#Bp̂a → x#yq̂ ∈ R̂:

• add states p, 〈r〉, and q to QA,

• add states p̄, 〈r〉′, and q̄ to QB,

• add rules Apa → A〈r〉 and A〈r〉 → xq to RA,

• add rules Bp̄ → B〈r〉′ and B〈r〉′ → yq̄ to RB, and

• add words pp̄, qq̄, and 〈r〉〈r〉′ to Ψ.

3. Set FA = { f | f̂ ∈ F̂} and FB = { f̄ | f̂ ∈ F̂}.

The algorithm above always halts because R̂ and F̂ are finite sets. To show that L(M̂) = L(Γ) we

firstly prove the following claim.

Claim 3.2. If u0#v0q̂0w0 and ui#viq̂iwi are two configurations of M̂, then

u0#v0q̂0w0 ⊢
i
M̂

ui#viq̂iwi iff (u0q0w0,v0q̄0) ⊢
2i
Γ (uiqiwi,viq̄i)

for all i ≥ 0.

Proof of Claim 3.2. The proof is established by induction on i ≥ 0.

Basis. For i = 0 we have

u0#v0q̂0w0 ⊢
0
M̂

u0#v0q̂0w0 iff (u0q0w0,v0q̄0) ⊢
0
Γ (u0q0w0,v0q̄0)

which is obviously true.

Induction hypothesis. Suppose that the claim holds for every 0 ≤ i ≤ j, for some j ≥ 0.

Induction step. From induction hypothesis we know that the claim holds for every 0≤ i≤ j, for some

j ≥ 0. For j+1 we have

u0#v0q̂0w0 ⊢M̂ u1#v1q̂1w1 ⊢
j

M̂
u j+1#v j+1q̂ j+1w j+1

iff u0 = uA,v0 = vB,w0 = aw1,u1 = ux,v1 = vy,
r = A#Bq̂0a → x#yq̂1 ∈ R̂

iff Aq0a → A〈r〉,A〈r〉 → xq1 ∈ RA,
Bq̄0 → B〈r〉′,B〈r〉′ → yq̄1 ∈ RB,
q0q̄0,q1q̄1,〈r〉〈r〉

′ ∈ Ψ

iff (u0q0w0,v0q̄0) ⊢Γ (u0〈r〉w1,v0〈r〉
′) ⊢Γ (u1q1w1,v1q̄1)

⊢
2 j
Γ (u j+1q j+1w j+1,v j+1q̄ j+1)

and therefore the claim holds for all j ≥ 0. �

Now it is clear that Ŝ#Ŝŝw ⊢i
M̂

f̂ iff (Ŝsw, Ŝs̄) ⊢2i
Γ (f , f̄), and we have L(M̂) = L(Γ). Therefore the

algorithm is correct and the theorem holds.

Theorem 3.3. RE = L (DSCAS(t1,t2,...,tn)), where t1, t2 = PDA, ti ∈ {FA,PDA}, 3 ≤ i ≤ n, n ≥ 3.

Proof of Theorem 3.3. Inclusion ⊇ follows directly from Church-Turing thesis. We prove the op-

posite inclusion ⊆ as follows: Given some DSCAS(PDA,PDA) Γ′ = (M′
1,M

′
2,Ψ

′), where M′
i is de-

fined as M′
i = (Q′

i,Σ, Γ̂,R
′
i,s

′
i, Ŝ,F

′
i), i ∈ {1,2}, and some n ≥ 3, construct a DSCAS(t1,t2,...,tn) Γ =

(M1,M2, . . . ,Mn,Ψ), where t1, t2 = PDA, ti ∈ {FA,PDA}, 3 ≤ i ≤ n, and

1. Mi = (Qi,Σ,Γi,Ri,si,Si,Fi), 1 ≤ i ≤ n,

2. Qi = {q | q′ ∈ Q′
i}, Q j = {s j, f j}, i ∈ {1,2}, 3 ≤ j ≤ n,

3. (Γi,Si) = (Γ̂, Ŝ), (Γ j,S j) ∈ {({Ŝ}, Ŝ),(/0,ε)}, i ∈ {1,2}, 3 ≤ j ≤ n,

4. Ri = {Apa → xq | Ap′a → xq′ ∈ R′
i}, R j = {S js j → S js j,S js j → f j}, i ∈ {1,2}, 3 ≤ j ≤ n,

5. Fi = { f | f ′ ∈ F ′
i }, Fj = { f j}, i ∈ {1,2}, 3 ≤ j ≤ n,

6. Ψ = {q1q2s3 . . . sn | q′1q′2 ∈ Ψ′}.

In construction above, we suppose without loss of generality that for every rule r′ ∈ R′
k holds: if

rhs(r′) ∈ F ′
k , then lhs(r′) = Ŝq′, q′ ∈ Q′

k, k ∈ {1,2}. Now, by induction on i ≥ 1, we prove that

(u0 p′0w,v0q′0) ⊢
i
Γ′ (f ′1, f ′2) iff (u0 p0w,v0q0,S3s3 . . . ,Snsn) ⊢

i
Γ (f1, f2, . . . ,sn). (1)

Basis. For i = 1 we have

(u0 p′0w,v0q′0) ⊢Γ′ (f ′1, f ′2)
iff u0 = A,v0 = B,w = a, p′0q′0 ∈ Ψ′,

Ap′0a → f ′1 ∈ R′
1,Bq′0 → f ′2 ∈ R′

2

iff Ap0a → f1 ∈ R1,Bq0 → f2 ∈ R2,Sisi → fi ∈ Ri,3 ≤ i ≤ n,
p0q0s3 . . . sn ∈ Ψ

iff (u0 p0w,v0q0,S3s3, . . . ,Snsn) ⊢Γ (f1, f2, . . . , fn)

and then (1) holds for i = 1.

Induction hypothesis. Suppose that (1) holds for every 1 ≤ i ≤ j, for some j ≥ 1.

Induction step. For j+1 we have

(u0Ap′0aw,v0Bq′0) ⊢Γ′ (u0xp′1w,v0yq′1) ⊢
j

Γ′ (f ′1, f ′2)
iff Ap′0a → xp′1 ∈ R′

1,Bq′0 → yq′1 ∈ R′
2, p′0q′0 ∈ Ψ′

iff Ap0a → xp1 ∈ R1,Bq0 → yq1 ∈ R2,Sisi → Sisi ∈ Ri,3 ≤ i ≤ n,
p0q0s3 . . . sn ∈ Ψ

iff (u0Ap0aw,v0Bq0,S3s3, . . . ,Snsn) ⊢Γ (u0xp1w,v0yq1,S3s3, . . . ,Snsn) ⊢
j
Γ (f1, f2, . . . , fn)

and then (1) holds for all i ≥ 1. Therefore, (Ŝs′1w, Ŝs′2) ⊢
∗
Γ′ (f ′1, f ′2) iff (S1s1w,S2s2, . . . ,Snsn) ⊢

∗
Γ

(f1, f2, . . . , fn) from which immediately follows L(Γ′) = L(Γ) and the theorem holds.

Corollary 3.4. RE = L (DSCAS(t1,t2 ,...,tn)), where card({i | ti = PDA,1 ≤ i ≤ n})≥ 2, n ≥ 2.

Proof of Corollary 3.4. Follows directly from Theorem 3.1 and Theorem 3.3.

4 EXAMPLE OF APPLICATION

The main advantage of DSCAS is that the all components of DSCAS make their computation steps

concurrently and deterministically. Since two cooperating pushdown automata can be used as Turing

machine, we can use DSCAS with n pairs of PDAs as a model for the simulation of n processors

working concurently. In this section we present a simpler example — a vector instruction simulation.

Let Γ = (Mc,M1,M2,Ψ) be a DSCAS(FA,PDA,PDA), where Mc is a controller, and M1 and M2 are

processing units. Here, Γ represents a simulator of the vector instruction for increment and works

with words over alphabet {0,1}. The definitions of M1, M2 and Mc can be determined from the

following table:

Rc R1 R2 Ψ

s0 → q1 Xs → Xq1 Xs → Xq1 sss

q11 → q1 Xq1 → X1q1 Xq1 → Xq1 q1q1q1

q10 → q2 Xq1 → Xq2 Xq1 → Xq2

q21 → q2 Xq2 → Xq2 Xq2 → X1q2 q2q2q2

q20 → qx Xq2 → X1qx Xq2 → X1qx

qx → e0 Xqx → Xe0 Xqx → Xe0 qxqxqx

e0 → e0 1e0 → e0 Xe0 → Xe0 e0e0e0

e0 → e1 Se0 → Se1 Xe0 → Xe1

e1 → e1 Xe1 → Xe1 1e1 → e1 e1e1e1

e1 → f Se1 → f Se1 → f

where X ∈ {S,1}.

Since DSCASs are accepting devices, we need a way how to obtain a result of simulation. For

this purpose we define a homomorphism from R∗
c to {0,1}∗, h, as follows: h(p → q) = 0 if p 6= q,

p,q ∈Qc, h(p → p) = 1 if p∈ Qc, and h(r) = ε for other rules r from Rc. With this extension, DSCAS

can work as transducer. The process of parallel incrementation is demonstrated below:

(s0010,Ss,Ss)
⊢Γ (q1010,Sq1,Sq1)
⊢Γ (q210,Sq2,Sq2)
⊢Γ (q20,Sq2,S1q2)
⊢Γ (qx,S1qx,S11qx)
⊢Γ (e0,S1e0,S11e0) [qx → e0] ≈ 0

⊢Γ (e0,Se0,S11e0) [e0 → e0] ≈ 1

⊢Γ (e1,Se1,S11e1) [e0 → e1] ≈ 0

⊢Γ (e1,Se1,S1e1) [e1 → e1] ≈ 1

⊢Γ (e1,Se1,Se1) [e1 → e1] ≈ 1

⊢Γ (f , f , f) [e1 → f] ≈ 0

Clearly, τΓ = {(01x01y0,01x+101y+10) | x ≥ 0,y ≥ 0} is the translation defined by DSCAS Γ together

with homomorphism h.

5 CONCLUSION

In this paper was proved that deterministic state-synchronized automata systems with at least two

pushdown automata as their components are Turing complete. Also, the example of application of

DSCAS as a formal model for parallel computation was given. As the topic for further investigation is

planned to study how to restrict presented systems to get a new language families or language families

from the area of regulated grammars.

Acknowledgement: This work was supported by Research and application of advanced methods in

ICT (FIT-S-14-2299).

REFERENCES

[1] KUČERA, Jiří. A Combination of Automata and Grammars. Brno (Czech Republic), 2013.

Master’s thesis. Brno University of Technology, Faculty of Information Technology, Department

of Information Systems.

[2] MEDUNA, Alexander. Automata and Languages: Theory and Applications. Springer, 2000.

ISBN 81-8128-333-3.

