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Abstract: In the contribution there are studied relations on the space of hyperstructures. We
describe basic and compatibility types of binary relations on hypergroups determined by linear
differential operators of the second order in the Jacobi form. These hyperstuctures are motivated
by modelling time functions.
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1 INTRODUCTION

In my research I study hyperstructures and multiautomata which are based on linear differential
operators constructed from various types of signals. Some results of this research have been
included in [4, 5, 8, 9]. The research is based on results achieved by Chvalina [1, 2, 3] and
[10] and concepts, notation and terminology of hyperstructure theory. For general concepts c.f.
[6, 7]; some results are based on [11, 12]

The hyperstructure theory was born in 1934, when Marty introduced the notion of a hypergroup.
Recall some basic notions and notation of the hypergroup theory from [1, 2, 5, 7, 8, 11, 12]. A
hypergroupoid is a pair (H,•), where H 6= 0 and • : H×H−→ P ∗(H) is binary hyperoperation
on H (here P ∗(H) denotes the system of all nonempty subsets of H). If a• (b• c) = (a•b)• c
holds for all a,b,c ∈ H, then (H, •) is called a semihypergroup. If moreover the reproduction
axiom (a•H = H = H •a for any element a∈H) is satisfied, then the semihypergroup (H,•)
is called a hypergroup. For two arbitrary non–empty subsets A,B of the set H we define

A•B =
⋃
{a•b;a ∈ A,b ∈ B}.

A hypergroup (H,•) is called a transposition hypergroup (or a join space), if the hypergroup
satisfies the transposition axiom: For any quadruple a,b,c,d ∈ H the relationship b \ a ≈ c/d
implies a•d ≈ b• c, where sets b\a = {x ∈ H;a ∈ b• x}, c/d = {x ∈ H;c ∈ x •d} are called
left and right extensions, respectively.

2 HYPERGROUPS OF LINEAR DIFFERENTIAL OPERATORS IN THE JACOBI FORM

First, we consider the function of the Gaussian–shaped pulse signal v(t) = a · exp(−2πt2),
and its first and second derivatives v′(t) = −4aπt exp(−2πt2), v′′(t) = 16aπ2t2v(t) for any t ∈



〈0,∞). Then we have differential equation

v′′(t)−16aπt2v(t) = 0, t ∈ 〈0,∞)

with initial conditions v(0) = a,v′(0) = 0; for more information see [4, 9, 10]. In what follows
we will consider linear differential operators in the so called Jacobi form. O. Borůvka inves-
tigated the second order linear differential equations in the Jacobi form, i.e. y′′+ p(x)y = 0,
where p is continuous function. With respect to importance of equations in the Jacobi form
we will investigated hypergroups of operators L(0, p) where L(0, p) = y′′+ p(x)y. So we will
consider linear differential operators of the so called Jacobi form L(0,Ψ(a)t) = d2

dt2 +16aπt2Id,
where a ∈ R+. This differential operator is formed by the left hand side of the above differen-
tial equation. The set JA2(T ) is a set of differential operators in the Jacobi form L(0,Ψ(a)t),
which are motivated by functions. We define hyperoperation “∗” on this set by the rule: For
L(0,Ψ(a)t) ,L(0,Ψ(b)t) ∈ JA2(T ), we put

L(0,Ψ(a)t)∗L(0,Ψ(b)t) = {L(0,Ψ(c)t) ;c ∈ R+,a ·b≤ c, t ∈ 〈0,∞)}.

Then (JA2(T ),∗) is a commutative hypergroup satisfying the transposition axiom, i.e. it is a
join space; for the proof see [9].

However, let us deal with another (yet unpublished) case. Chapman-Richardson’s function
(CHRF) y = A · [1− exp(−ct)]b and its first and second derivation
y′ = Abc[1− exp(−ct)]b−1 · exp(−ct), y′′ =−Abc2 · [1− exp(−ct)]b · exp(ct)−b

(exp(ct)−1)2 , thus

y′′+bc2 · exp(ct)−b
(exp(ct)−1)2 y = 0; t ∈ 〈0,∞)

Modelling function y = A · [1− exp(−ct)]b is one of the most common functions based on the
original Bertalanffy equation derived for growth and increment of body weight. As above, we
define the set JgA2(T ) = {L(0,τ(b,c)t) ;b,c ∈ R+} , where L(0,τ(b,c)t) is a linear second
order differential operator and L(0,τ(b,c)t)y = 0, thus τ(b,c)t = bc2 · exp(ct)−b

(exp(ct)−1)2 . We define a
hyperoperation “#” by the rule:

L(0,τ(b,c)t)#L(0,τ(d,e)t) = {L(0,τ(k, l)t) ;k, l ∈ R+,k ≥ b ·d, l ≥ c · e}

for any L(0,τ(b,c)t) ,L(0,τ(d,e)t) ∈ JgA2(T ).

Lemma 2.1 Let {L(0,τ(ai,bi)t) ;ai,bi ∈ R+, i = 1,2,3,4} be a four-element subset of the hy-
pergroup JgA2(T ). Then we have

L(0,τ(a1,b1)t)#L(0,τ(a2,b2)t)≈ L(0,τ(a3,b3)t)#L(0,τ(a4,b4)t) .

Proof. Suppose L(0,τ(ai,bi)t) , i = 1,2,3,4 are arbitrary operators from the set JgA2(T ). De-
note c = max{a1a2,a3a4},d = max{b1b2,b3b4}. Since ak,bk ∈ R+, we have a1a2 ≤ c,a3a4 ≤
c,b1b2 ≤ d,b3b4 ≤ d, thus L(0,τ(c,d)t) ∈ L(0,τ(a1,b1)t)#L(0,τ(a2,b2)t) ∩ L(0,τ(a3,b3)t)
#L(0,τ(a4,b4)t), consequently the assertion of the lemma is valid. �



Theorem 2.2 Let T = 〈0,∞) be the interval of real non-negative numbers. Then the commu-
tative hypergroupoid (JgA2(T ),#) with the above defined hyperoperation # is a commutative
hypergroup satisfying the transposition axiom, i.e. it is a commutative transposition hypergroup
hence a join space.

Proof. For arbitrary operators L(0,τ(a,b)t) ,L(0,τ(c,d)t) ∈ JgA2(T ) we have L(0,τ(a,b)t)#
L(0,τ(c,d)t) = {L(0,τ(r,s)t) ;r,s ∈ R+,r ≥ ac,s≥ bd}. Clearly, the hypergroupoid
(JgA2(T ),#) is commutative. We are going to show the hyperoperation is associative:
Suppose L(0,τ(a,b)t) ,L(0,τ(c,d)t) ,L(0,τ(e, f )t) ∈ JgA2(T ). Then L(0,τ(a,b)t)#
(L(0,τ(c,d)t)# L(0,τ(e, f )t)) = L(0,τ(a,b)t)# {L(0,τ(k, l)t) ,k, l ∈ R+,k ≥ ce, l ≥ d f}. We
have L(τ) = {L(0,τ(k, l)t) ,k, l ∈ R+,k ≥ ce, l ≥ d f} then

⋃
{L(0,τ(a,b)t)# L(0,τ(m,n)t) ;

L(0,τ(m,n)t)∈ L(τ)}= {L(0,τ(r,s)t) ;r,s∈R+,r≥ ace,s≥ bd f}= {L(0,τ(k, l)t) ;k, l ∈R+,
k≥ ac, l ≥ bd}# L(0,τ(e, f )t) = (L(0,τ(a,b)t)# L(0,τ(c,d)t))# L(0,τ(e, f )t). It holds that the
hypergroupoid (JgA2(T ),#) is a commutative semihypergroup.
Further, L(0,τ(a,b)t)#JgA2(T ) = JgA2(T ). Evidently L(0,τ(a,b)t)#JgA2(T ) ⊆ JgA2(T ).
Consider an arbitrary operator L(0,τ(m,n)t) ∈ JgA2(T ). Then there exists an operator
L(0,τ(r,s)t) ∈ JgA2(T ) such that

L(0,τ(m,n)t) ∈ L(0,τ(a,b)t)#L(0,τ(r,s)t) , i.e. a · r ≤ m, b · s≤ n.

Indeed, define coefficients r = m
a and s = n

b . Then a · m
a = m and b · n

b = n, thus L(0,τ(m,n)t) ∈
L(0,τ(a,b)t)#L(0,τ(r,s)t), where L(0,τ(s,r)t) ∈ JgA2(T ). Consequently JgA2(T )⊆
L(0,τ(a,b)t)#JgA2(T ) hence we obtain

L(0,τ(a,b)t)#JgA2(T ) = JgA2(T ).

We are going to show that the hypergroup is a join space. The hyperoperation “#” is commuta-
tive thus L(0,τ(a,b)t)\L(0,τ(c,d)t) = L(0,τ(c,b)t)/L(0,τ(a,b)t) for all operators
L(0,τ(a,b)t) ,L(0,τ(c,d)t) ∈ JgA2(T ).

It remains to prove that this hypergroup satisfies the transposition law.
Suppose L(0,τ(a,b)t) ,L(0,τ(c,d)t) ,L(0,τ(e, f )t) ,L(0,τ(g,h)t) ∈ JgA2(T ) is a quadruple of
differential operators in the Jacobi form such that

L(0,τ(a,b)t)/L(0,τ(c,d)t)≈ L(0,τ(e, f )t)/L(0,τ(g,h)t) .

Denote u = max{ag,ce},v = max{bh,d f}. Since u ≥ ag,v ≥ bh, we have L(0,τ(u,v)t) ∈
L(0,τ(a,b)t)#L(0,τ(g,h)t) . Similarly L(0,τ(u,v)t) ∈ L(0,τ(c,d)t)#L(0,τ(e, f )t) which is a
consequence of inequalities u≥ ce,v≥ d f .

Thus

L(0,τ(a,b)t)#L(0,τ(g,h)t)∩L(0,τ(c,d)t)#L(0,τ(e, f )t) = /0

Consequently the commutative hypergroup (JgA2(T ),#) satisfies the transposition law there-
fore it is a transposition hypergroup, i.e. a join space. �



3 PROPERTIES OF RELATIONS BETWEEN HYPERGROUPS

Define a binary relation ρ ⊆ JgA2(T )× JA2(T ) by the rule [L(0,τ(b,c)t) ,L(0,Ψ(a)t)] ∈ ρ

for an arbitrary pair [L(0,τ(b,c)t) ,L(0,Ψ(a)t)] ∈ JgA2(T )× JA2(T ), whenever there exists
L(0,τ(d,e)t) ∈ JgA2(T ) such that

a = b ·d + c · e for the coeficients a,b,c,d,e ∈ R+.

In [3] some compatibility properties of binary relations on hypergroups are treated in detail. All
of them can be extended onto cases of relations between different structures.

So, let G,H be hypergroups and R⊆H×G. We say that the binary relation R has the transmis-
sion substitution property (TSP):

• TSP-1; of the first type
if for any pair [a,b] ∈ H ×G, [c,d] ∈ H ×G such that [a,b] ∈ R, [c,d] ∈ R we have (a ·
c)R(b · d), i.e. for each x ∈ a · c there is y ∈ b · d such that xRy and vice versa, for any
y ∈ b ·d there exists an element x ∈ a · c with xRy.

• TSP-2; of the second type
if for any pair [a,b]∈H×G, [c,d]∈H×G such that [a,b]∈R, [c,d]∈R we have R(a ·c)=
b ·d

• TSP-3; of the third type
if for any pair [a,b] ∈ H ×G, [c,d] ∈ H ×G such that [a,c] ∈ R, [b,d] ∈ R implies (a ·
c)R(b ·d), i.e. for any pair [x,y] ∈ (a · c)× (b ·d) we have xRy, i.e. (a · c)× (b ·d)⊆ R.

Theorem 3.1 Let ρ⊆ JgA2(T )×JA2(T ) be the relation defined as above. Then the relation ρ

has transmission substitution properties TSP-1 and TSP-3.

Proof. Consider arbitrary pairs of operators [L(0,τ(b,c)t) ,L(0,Ψ(a)t)] ∈ JgA2(T )×JA2(T ),
[L(0,τ(e, f )t) ,L(0,Ψ(d)t)]∈ JgA2(T )×JA2(T ) such that pairs [L(0,τ(b,c)t) , L(0,Ψ(a)t)]∈
ρ and [L(0,τ(e, f )t) , L(0,Ψ(d)t)] ∈ ρ.

TSP-1:
Consider the hyperproduct L(0,Ψ(a)t) ∗ L(0,Ψ(d)t) = {L(0,Ψ(g)t) ,g ∈ R+,g ≥ a · d} and
hyperproduct L(0,τ(b,c)t)#L(0,τ(e, f )t) = {L(0,τ(u,v)t) ;u,v ∈ R+,u ≥ b · e,v ≥ c ḟ}. Sup-
pose L(0,τ(m,n)t) ∈ {L(0,τ(u,v)t) ;u,v ∈R+,u≥ b ·e,v≥ c ḟ} and r ∈R+ such that r≥ a·d

m+n .
Then mr + nr = (m+ n)r ≥ ad. Denoting (m+ n)r = s we have L(0,Ψ(s)t) ∈ L(0,Ψ(a)t) ∗
L(0,Ψ(d)t) and simultaneously L(0,τ(m,n)t)ρL(0,Ψ(s)t) and vice versa in the same way.

TSP-3:
Consider that for any pair [L(0,τ(u,v)t) ,L(0,Ψ(r)t)] ∈ {L(0,τ(u,v)t) ,u,v ∈ R+,u ≥ be,v ≥
c f}×{L(0,Ψ(r)t) ; t ∈ R+,r ≥ ad} there exists an operator L(0,τ(s,s)t) ∈ L(0,τ(b,c)t)#
L(0,τ(e, f )t) (here s = s

u+v ≥ 0) such that us+ vs = (u+ v)s = r. Then pars [L(0,τ(u,v)t) ,
L(0,Ψ(r)t)] ∈ ρ.

Remark 3.2 It is easy to see that the relation ρ does not have the properties TSP-2.
Indeed, consider ρ(L(0,τ(b,c)t)#L(0,τ(e, f )t)) = ρ({L(0,τ(u,v)t) ;u≥ be,v≥ e f}). Suppose



a = 10,d = 50,b = 2,e = 1,c = 3, f = 2. Then L(0,Ψ(a)t)∗L(0,Ψ(d)t) = {L(0,Ψ(s)t) ;s ≥
ad} i.e. if s≥ 5 ·102. Next for m = 0,1 = n we have L(0,τ(2,6)t)∈ L(0,τ(2,3)t)#L(0,τ(1,2)t)
and for a = 2 · 0,1+ 6 · 0,1 = 0,8 the operator L

(
0,Ψ(8 ·10−1)t

)
∈ ρ(L(0,τ(2,6)t)). Since

8· 10−1,L
(
0,Ψ(8 ·10−1)t

)
/∈L(0,Ψ(10)t)∗L(0,Ψ(50)t). Thus ρ(L(0,τ(2,3)t)#L(0,τ(1,2)t))

6= L(0,Ψ(10)t)∗L(0,Ψ(50)t). �
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