
A DECISION PROCEDURE FOR THE WSKS LOGIC

Tomáš Fiedor
Master Degree Programme 2, FIT BUT

E-mail: xfiedo01@stud.fit.vutbr.cz

Supervised by: Ondřej Lengál
E-mail: ilengal@fit.vutbr.cz

Abstract: Various types of logics are often used as a means for a formal specification of systems.
The weak monadic second-order logic with k successors (WSkS) is one of these logics with quite
high expressivity, yet still decidable. Although the complexity of checking satisfiability of a WSkS
formula is not even in the ELEMENTARY class, there are some approaches to this problem that
perform well in practice. The currently existing implementations of a WSkS decision procedures
are based on the use of deterministic tree automata. The aim of this work is to exploit the recently
developed techniques for efficient manipulation of non-deterministic tree automata and implement an
efficient WSkS decision procedure based on those.

Keywords: formal verification, tree automata, WSkS, decision procedures

1 INTRODUCTION

In formal verification, logics are often used for a specification of the verified systems in a very natural
and intuitive way. The weak monadic second-order logic of k successors (WSkS) [4] is a fragment of
the second order monadic logic that allows to quantify over finite set variables where every element
from the universe of discourse has k successors. This way various k-ary tree structures, e.g. heaps or
binary trees, and linear structures, e.g. linked lists, can be expressed.

There has been established a one-to-one correspondence between WSkS formulae and tree automata.
Based on this there has already been several attempts to implement a decision procedure for WSkS
using deterministic tree automata [2]. However, with the recent development in algorithms for ma-
nipulation of non-deterministic tree automata, the aim of this work is to exploit these ideas in an
implementation of a WSkS decision procedure based on non-deterministic tree automata.

2 WSKS SYNTAX

A WSkS term is either the empty constant ε, a first-order variable symbol written in lower-case letters
(e.g. x, y, . . .) or an unary symbol from {1, . . . ,k} written in postfix notation. For example x1123 or
ε2111 are terms. An atomic formula, for some second-order variables X and Y , is either the subset
predicate X ⊆Y , the singleton predicate Sing(X), the successor predicate X =Yi, for some 1≤ i≤ k,
or predicate X = ε denoting that X is a singleton set {ε}. A WSkS formula is then built out of
these atomic formulae using only the logical connectives ∧,∨,¬ and the existential quantifier ∃X for
quantification over second-order variables.

Example 2.1 The following example WSkS formula ψ denotes that there does not exist a singleton
set which is not a subset of the set X.

ψ
def
= ¬∃P : Sing(P)∧P 6⊆ X (1)

1 2 ⊥

3 ⊥

P: 0

P: 1

P: 0

P: 1

P: 0|1

P: 0|0|1
X: 0|1|1

P: 1
X: 0

Σ

b) AP 6⊆X

a) ASing(P)

(1, 3) (2, 3) (⊥, 3)

(2,⊥) (⊥,⊥)

P: 1
X: 1

P: 0|0
X: 0|1

P: 1
X: 0

P: 1
X: 1

P: 0|0
X: 0|1

P: 1
X: 0

P: 0|0|1
X: 0|1|1

P: 1
X: 0

P: 1|1
X: 0|1

P: 0|0
X: 0|1

Σ

c) ASing(P)∧P 6⊆X

1 2 3

4 5

X: 1

X: 0|1

X: 0

X: 1

X: 0|1

X: 0

X: 0|1

X: 0

X: 0|1

X: 0|1 X: 0|1

d) Aϕ

Figure 1: Finite automata corresponding to the subformulae of the formula ϕ
def
= ∃P : Sing(P)∧P 6⊆ X

3 DECIDING WSKS

Many decision procedures for a wide range of logics are based on the use of some kind of finite-state
automata. WSkS is no exception and its currently most often used decision procedure is based on
constructing a k-ary tree automaton and examining its language.

3.1 DECIDING WSkS USING DETERMINISTIC AUTOMATA

One of the tools for deciding WSkS, MONA [2], constructs a deterministic tree automaton Aϕ for the
given formula ϕ recursively on the structure of the formula. As a base, each atomic subformula is
transformed to a corresponding automaton. Further it constructs for connectives φ∨ψ, φ∧ψ, ¬φ and
∃X .φ, union of Aφ and Aψ, intersection of Aφ and Aψ, complement of Aφ and projection on the track
of X of Aφ respectively, such an automaton then represents all models of formula ϕ.

3.2 DECIDING WSkS USING NON-DETERMINISTIC AUTOMATA

Although this approach yields good results in many practical examples, every time non-determinism
is introduced the automaton is determinised and the information about the original states is forgot-
ten. Therefore such an approach has issues with extensive use of automaton complementation and
since currently there is no known tree automaton complementation technique better than bottom-up
determinization of automaton with complementation of the set of final states, heavy optimizations
and heuristics had to be used in MONA to achieve good results.

We propose that it is not necessary to construct the automaton representing all models of ϕ. In-
stead construction of the automaton and the search for an accepting or a non-accepting state can
be done on-the-fly and we can further exploit recent development in algorithms for manipulating
non-deterministic tree automata. Given a WSkS formula ϕ we transform it to the formula in the

existentially-quantified prenex normal form ψ
def
= ∃Xm+1¬∃Xm . . .¬∃X2¬∃X1.π(X), where Xi denotes

a set of second order variables. We then create a hierarchical family of formulae Φ = {ϕ0, . . . ,ϕm}
where ϕ0

def
= π and for all 0≤ i≤ m−1 it holds that ϕi+1

def
= ¬∃Xi+1.ϕi.

Further, using the operations of complementation γ and projection ωX over the set of variables X , we
define the family of automataA= {A0, . . . ,Am} as follows:

A0 = Aπ (2)

Ai+1 = γ(ωXi+1(Ai)) (3)

such that there is a correspondence between Ai and ϕi for all 0≤ i≤ m.

{1} {1, 4}

{1, 2}

{1, 4, 5}

{1, 2, 3}

{1, 2, 4, 5}

{1, 2, 3, 4, 5}

X: 0

X: 1

X: 0

X: 1

X: 0

X: 1

X: 0

X: 1

X: 0
X: 1

X: 0

X: 1

X: 1|0

Figure 2: Comparison of the antichain-based (grey nodes) and the classical approach to universality

checking of the automaton Aψ corresponding to the formula ψ
def
= ¬∃P : Sing(P)∧P 6⊆ X

The Language of the automaton Aψ is further tested for universality. The classical naive approach
performs determinization using subset construction to obtain a deterministic automaton, which is
further complemented by swapping final and non-final states and finally checked whether it contains
reachable final state. In our approach we wish to exploit the ideas from the Antichains algorithm
[1] and check universality of Aψ without explicitly constructing it, but rather using a search of the
state space over powers of the state set of A0. To illustrate this on an example, consider the example

formula ψ
def
= ¬∃P : Sing(P)∧ P 6⊆ X and the automaton Aϕ from Figure 1 corresponding to the

formula ϕ
def
= ∃P : Sing(P)∧P 6⊆ X , i.e. ψ

def
= ¬φ. We can search for a non-accepting state of Aψ by

searching for a reachable set of states of Aϕ that does not contain a final state. Further, by using the
antichains principle, if we encounter a set of states P and later a set of states R, s.t. P⊆ R, we do not
need to explore R as P is smaller and therefore has a bigger chance of reaching a non-accepting set of
states.

4 CONCLUSION

We proposed a new decision procedure of WSkS logic that uses non-deterministic automata instead
of deterministic ones used, e.g. in tool MONA [2]. This different approach makes use of recent
developments in the field of non-deterministic automata algorithms such as universality checking or
language inclusion checking, allowing us to search for a rejecting or accepting states on-the-fly with-
out constructing the automaton corresponding to the given formula at all, possibly yielding a faster
decision procedure for some class of formulae.

REFERENCES

[1] Abdulla, Parosh Aziz et al.: When simulation meets antichains (on checking language inclu-
sion on nondeterministic finite (tree) automata). In Tools and Algorithms for Construction and
Analysis of Systems, LNCS 6015, pages 158–174, Springer Verlag, 2010.

[2] MONA: Web pages of MONA. [online] Available on: http://www.brics.dk/mona/.

[3] Comon, H. et al.: Tree automata techniques and applications. 2007, release October 12th, 2007.

[4] Büchi, J. R.: Weak second-order arithmetic and finite automata. Mathematical Logic Quarterly,
6(1–6):66–92, 1960.

