
ON STATELESS PUSHDOWN AUTOMATA AND LIMITED
PUSHDOWN ALPHABETS

Lukáš Vrábel
Doctoral Degree Programme (3), FIT BUT

E-mail: xvrabe01@stud.fit.vutbr.cz

Supervised by: Alexander Meduna
E-mail: meduna@fit.vutbr.cz

Abstract: As its name suggests, a stateless pushdown automaton has no states. As a result, each
of its computational steps depends only on the currently scanned symbol and the current pushdown-
store top. Recently, there has been an interest in the investigation of limited pushdown alphabets. An
infinite hierarchy of languages has been established based on this limitation. The proof was based
on the language with growing input alphabet. This result was then improved by showing that the
binary alphabet is sufficient for deterministic stateless automata. In this paper, we consider general
nondeterministic stateless pushdown automata. We generalize these recent results by establishing
an infinite hierarchy of language families resulting from stateless pushdown automata with limited
pushdown alphabets and binary input alphabets.

Keywords: stateless pushdown automata, limited pushdown alphabets, binary input alphabet, gener-
ative power, infinite hierarchy of language families

1 INTRODUCTION

A stateless pushdown automaton (see [5, 6, 13, 14]) is an ordinary pushdown automaton with only a
single state. Consequently, the moves of a stateless pushdown automaton do not depend on internal
states but solely on the symbols currently scanned by its head accessing the input tape and pushdown
store. Recently, there has been a renewed interest in the investigation of various types of stateless
automata. Namely, consider stateless restarting automata [8, 9], stateless multihead automata [4, 7],
a relation of stateless automata to P systems [15], and stateless multicounter machines and Watson-
Crick automata [1–3].

It has been also shown that limiting the pushdown alphabet of stateless pushdown automata results
in infinite hierarchy of languages accepted by these automata (see [12]). However, the witness lan-
guage for the n-th level of the hierarchy is over an input alphabet with 2(n-1) elements. This result
was improved by showing that a binary input alphabet is sufficient to establish infinite hierarchy for
deterministic stateless pushdown automata (see [10]). However, deterministic stateless pushdown
automata are less powerfull than their nonodeterministic counterpart.

In this paper, we consider the impact of the size of pushdown alphabets to the power of general nonde-
terministic stateless pushdown automata with binary input alphabet. More specifically, we establish
an infinite hierarchy of language families over a binary alphabet resulting from stateless pushdown
automata with limited pushdown alphabets. For every positive integer n, we give a language over
binary alphabet which can only be accepted by a stateless pushdown automaton with at least n+ 1
pushdown symbols.

The achieved results can be seen as a continuation of existing studies on infinite hierarchies resulting
from limited resources of various types of stateless automata (see [1–4, 7, 10, 12]).

The paper is organized as follows. First, Section 2 gives all the necessary terminology. Then, Sec-
tion 3 establishes the infinite hierarchies mentioned above. In the conclusion, Section 4 states an open
problem related to the achieved results.

2 PRELIMINARIES AND DEFINITIONS

In this paper, we assume that the reader is familiar with the theory of formal languages (see [6]). For
a set Q, card(Q) denotes the cardinality of Q. For an alphabet (finite nonempty set) V , V ∗ represents
the free monoid generated by V under the operation of concatenation. The unit of V ∗ is denoted by ε.
Set V+ =V ∗−{ε}; algebraically, V+ is thus the free semigroup generated by V under the operation
of concatenation. For w ∈ V ∗, |w| denotes the length of w. For w ∈ V ∗ and a ∈ V , #aw denotes the
number of occurrences of a in w.

Next, we define stateless pushdown automata. Since these automata have only a single state, for
brevity, we define them without any states at all.

Definition 1 (see [13]). A stateless pushdown automaton (an SPDA for short) is a quadruple

M =
(
Σ,Γ,R,α

)
,

where Σ is an input alphabet, Γ is a pushdown alphabet, R ⊆ Γ× (Σ∪{ε})×Γ∗ is a finite relation,
called the set of rules, and S ∈ Γ is the initial pushdown symbol. Instead of (A,a,w) ∈ R, we write
Aa→ w throughout the paper. For r = (Aa→ w) ∈ R, Aa and w represent the left-hand side of r and
the right-hand side of r, respectively.

The configuration of M is any element of Γ∗×Σ∗. For a configuration c = (π,w), π is called the
pushdown of c and w is called the unread part of the input string (or just input string for short) of c.

The direct move relation over the set of all configurations, symbolically denoted by `, is a binary
relation over the set of all configurations defined as follows: (πA,au) ` (πw,u) in M if and only if
Aa→w∈ R, where π,w∈ Γ∗, A∈ Γ, a∈ Σ∪{ε}, and u∈ Σ∗. Let `k, `+, and `∗ denote the kth power
of `, for some k ≥ 1, transitive closure of `, and the reflexive-transitive closure of `, respectively.

The language accepted by M is denoted by L(M) and defined as

L
(
M
)
=
{

w ∈ Σ
∗ | (S,w) `∗ (ε,ε)

}
.

In some proofs, we will need to point out the fact that the part of the pushdown is not used in the
acceptation of a string by an SPDA. In order to simplify these proofs, we will introduce the following
notion.

Definition 2. Let M = (Σ,Γ,R,S) be an SPDA and let

(ππ1,w1) ` (ππ2,w2) ` · · · ` (ππn,wn)

where π ∈ Γ∗, π1 . . .πn ∈ Γ∗, and w1 . . .wn ∈ Σ∗. If πi ∈ Γ+ for all 1≤ i≤ n, then we say that π is not
used in (ππ1,w1) `∗ (ππn,wn).

Furthermore, in order to show the infinite hierarchy, we will use the following language, Ln, defined
over the binary alphabet {a,b} as follows:

Definition 3. Let n≥ 2 be a positive integer, and consider the (n+1)-SPDA M =
(
Σ,Γ,R,S

)
, where

Σ = {a,b}
Γ = {S}∪{Ai | 1≤ i≤ n},
R =

⋃
1≤i≤n{Sb→ Ai

i,Aia→ ε,Aib→ Ai+1
i },

with S /∈ {Ai | 1≤ i≤ n}. Let Ln = L(M).

Note, that for each w ∈ Ln, there is such k that #aw = k#bw, where 1≤ k≤ n is a natural number. This
fact will be used in some of the proofs.

3 RESULTS

Following two lemmas will help us reduce the complexity of the proofs presented later. First lemma
is the well-known pumping lemma, which illustrates the effect of finite resources on the accepted
language.

Lemma 1. (The Pumping Lemma) Let L be a regular language. Then, there exists a natural number
k such that every word, z ∈ L, satisfying |z| ≥ k can be expressed as z = uvw where v 6= ε, |uv| ≤ k,
and uvmw ∈ L for all m≥ 0.

Proof. See [11], page 230.

Next lemma illustrates the effect of the statelessness on the direct move relation. It shows that a
sequence of moves is independent of the pushdown contents and part of input string not used during
these moves.

Lemma 2. Let M = (Σ, Γ, R, S) be an SPDA. If (π1,u1) `∗ (π2,u2) for some π1,π2 ∈ Γ∗ and u1,u2 ∈
Σ∗, then (ππ1,u1u) `∗ (ππ2,u2u) for all π ∈ Γ∗ and u ∈ Σ∗.

Proof. This lemma follows from the fact that the definition of ` depends only on the topmost symbol
of the pushdown and on the leftmost symbol of the input string.

Notice that Lemma 2 implies that if (π1,u1) `∗ (ε,ε), then (ππ1,u1u) `∗ (π,u) for each π ∈ Γ∗ and
u ∈ Σ∗. This implication is used throughout the rest of this paper.

Following lemma covers the most important result of this paper. It shows that we need at least n+1
pushdown symbols in order to accept the language Ln.

Lemma 3. Ln 6∈ nSPDA

Proof. Let M = (Σ,Γ,R,S) be an SPDA accepting Ln. We will show, that card(Γ) ≥ n+ 1. First,
Claim 1 will show that S can be used only in the beginning of an acceptation of any word. Then,
Claim 2 will show that there have to be at least n addition distinct symbols in Γ.

Recall that for each w ∈ Ln, there is such k that #aw = k#bw, where 1 ≤ k ≤ n is a natural number.
This fact will be used for proving both claims.

Claim 1. Let M = (Σ,Γ,R,S) be an SPDA accepting Ln. Then, S can occur on the pushdown only in
the first configuration of any accepting move sequence.

Proof. By contradiction. For the sake of contradiction, assume that there is such x ∈ Ln where S
occurs on the pushdown more than once during the acceptation of x. Let x = uvw, where u,v,w ∈ Σ∗,
such that (S,uvw) `+ (αS,vw) `∗ (α,w) `∗ (ε,ε), where α ∈ Γ∗. Thus, |u| ≥ 1 and |v| ≥ 1.

As |uw| ≥ 1, there is such y ∈ Ln that the ratio of #a(uyw) to #b(uyw) is not a natural number.

As y ∈ Ln, (S,y) `∗ (ε,ε). Then, by Lemma 2, (S,uyw) `∗ (αS,yw) `∗ (α,w) `∗ (ε,ε). Therefore,
uyw ∈ Ln. But as there is no such k that #a(uyw) = k#b(uyw), uyw 6∈ Ln, which is a contradiction.
Thus, the lemma holds.

Now we will show, that there have to be unique Ai ∈ Γ for each 1 ≤ i ≤ n such that Ai 6= S. In the
proof, we will concentrate just on some of the strings contained in Ln. More precisely, we will use
just the following strings defined over the natural number i:

Ln(i) = {w | w = b(bai)kai for some k ≥ 1}.

Observe that Ln(i)⊆ Ln for each 1≤ i≤ n, so each SPDA accepting Ln have to accept all of the strings
from Ln(i). Furthermore, note that Ln(i) is regular language and #a(w) = i#b(w) for each w ∈ Ln(i).

Claim 2. There is distinct Ai ∈ Γ for each 1≤ i≤ n such that Ai 6= S.

Proof. By contradiction. Let Γ6S = Γ−{S}. For the sake of contradiction, assume that card(Γ6S)< n.
Then there are x1 ∈ Ln(j1) and x2 ∈ Ln(j2), where 1 ≤ j1 < j2 ≤ n, such that the same A ∈ Γ6S is
used in the acceptation of both x1 and x2. Furthermore, as Ln(j1) and Ln(j2) are regular languages,
by Lemma 1, x1 = u1w1v1 and x2 = u2w2v2 such that u1,u2,v1,v2,w1,w2 ∈ Σ∗, u1wk

1v1 ∈ Ln(j1), and
u2wk

2v2 ∈ Ln(j2) for every k ≥ 1.

By Claim 1, S can occur only in the beginning of acceptation, and by contradiction assumption,
card(Γ6S)< n. Therefore, there has to be A ∈ Γ6S such that

(S,u1wk
1v1) `∗ (α1A,wk

1v1) `∗ (α1,v1) `∗ (ε,ε)

and
(S,u2wk

2v2) `∗ (α2A,wk
2v2) `∗ (α2,v2) `∗ (ε,ε)

where α1,α2 ∈ Γ∗ are not used during the (α1A,wk
1v1) `∗ (α1,v1) and (α2A,wk

2v2) `∗ (α2,v2) respec-
tively.

Then, as w1 and w2 can be iterated, #a(w1) = j1#b(w1) and #a(w2) = j2#b(w2). Furthermore, as each
move removes one symbol from the input, |u1| ≥ 1 and |u2| ≥ 1. Therefore, #a(u1v1) = j1#b(u1v1)
and #a(u2v2) = j2#b(u2v2).

Now we can construct such x = u2w1v2 that would lead to contradiction. According to Lemma 2,
there is

(S,u2wk
1v2) `∗ (α2A,wk

1v2) `∗ (α2,v2) `∗ (ε,ε)

so u2wk
1v2 ∈ Ln for any k ≥ 1. However, as j1 6= j2, there is no m ≥ 1 such that #a(u2wk

1v2) =
m#b(u2wk

1v2) for each k ≥ 1, which is a contradiction to u2wk
1v2 ∈ Ln. Thus, the claim holds.

By Claim 1 and Claim 2, cardΓ≥ n+1. Therefore, Ln 6∈ nSPDA, so the lemma holds.

Based on these lemmas, we present the final result in the following theorem.

Theorem 1. nSPDA⊂ n+1SPDA for each n≥ 2.

Proof. By Lemma 3 Ln 6∈ nSPDA and by Definition 3 Ln ∈ n+1SPDA. By Definition 1, nSPDA ⊆
n+1SPDA. Thus, the theorem holds.

4 CONCLUSION

In this paper, we have shown an infinite hierarchy of languages over binary alphabet resulting from
limiting the pushdown alphabet of stateless pushdown automata. However, the hierarchy is estab-
lished on pushdown alphabets of sizes two and more. We conclude this paper by presenting an open
problem: can this hierarchy be extended also to stateless pushdown automata with single pushdown
symbol?

ACKNOWLEDGEMENT

This work was supported by the following grants: BUT FIT-S-11-2, MŠMT ED1.1.00/02.0070, and
CEZ MŠMT MSM0021630528.

REFERENCES

[1] Ö. Eğecioğlu, L. Hegedüs, and B. Nagy. Hierarchies of stateless multicounter 5′→ 3′

Watson-Crick automata languages. Fundamenta Informaticae, 110(1-4):111–123, 2011.

[2] Ö. Eğecioğlu, L. Hegedüs, and B. Nagy. Hierarchy results on stateless multicounter 5′→ 3′

Watson-Crick automata. In Advances in Computational Intelligence, volume 6691 of Lecture
Notes in Computer Science, pages 465–472. Springer, Berlin/Heidelberg, 2011.

[3] Ö. Eğecioğlu and O. H. Ibarra. On stateless multicounter machines. In CiE’09: Proceedings of
the 5th Conference on Computability in Europe: Mathematical Theory and Computational
Practice, pages 178–187, Heidelberg, DE, 2009.

[4] P. Frisco and O. H. Ibarra. On stateless multihead finite automata and multihead pushdown
automata. In Developments in Language Theory, volume 5583 of Lecture Notes in Computer
Science, pages 240–251. Springer, Berlin/Heidelberg, 2009.

[5] J. H. Gallier. DPDA’s in ’atomic normal form’ and applications to equivalence problems.
Theoretical Computer Science, 14(2):155–186, 1981.

[6] M. Harrison. Introduction to Formal Language Theory. Addison-Wesley, Boston, 1978.

[7] O. H. Ibarra, J. Karhumäki, and A. Okhotin. On stateless multihead automata: Hierarchies and
the emptiness problem. In LATIN 2008: Theoretical Informatics, volume 4957 of Lecture
Notes in Computer Science, pages 94–105. Springer, Berlin/Heidelberg, 2008.

[8] M. Kutrib, H. Messerschmidt, and F. Otto. On stateless deterministic restarting automata. Acta
Informatica, 47(7):391–412, 2010.

[9] M. Kutrib, H. Messerschmidt, and F. Otto. On stateless two-pushdown automata and restarting
automata. International Journal of Foundations of Computer Science, 21(5):781–798, 2010.

[10] Tomás Masopust. A note on limited pushdown alphabets in stateless deterministic pushdown
automata. CoRR, abs/1208.5002, 2012.

[11] A. Meduna. Automata and Languages: Theory and Applications. Springer, London, 2000.

[12] Alexander Meduna, Lukáš Vrábel, and Petr Zemek. An infinite hierarchy of language families
resulting from stateless pushdown automata with limited pushdown alphabets. In DCFS’12:
14th International Workshop on Descriptional Complexity of Formal Systems, volume 2012 of
LNCS 7386, pages 236–243. Springer Verlag, 2012.

[13] M. Oyamaguchi and N. Honda. The decidability of equivalence for deterministic stateless
pushdown automata. Information and Control, 38(3):367–376, 1978.

[14] L. G. Valiant. Decision procedures for families of deterministic pushdown automata. Research
Report CS-RR-001, Department of Computer Science, University of Warwick, Coventry, UK,
1973.

[15] L. Yang, Z. Dang, and O. H. Ibarra. On stateless automata and P systems. International
Journal of Foundations of Computer Science, pages 1259–1276, 2008.

