
DEEP PUSHDOWN TRANSDUCERS AND PARALLEL DEEP
PUSHDOWN TRANSDUCERS

Peter Solár
Doctoral Degree Programme (4), FIT BUT

E-mail: xsolar05@stud.fit.vutbr.cz

Supervised by: Alexander Meduna
E-mail: meduna@fit.vutbr.cz

Abstract: This paper presents two variants of deep pushdown transducers as extended versions of
pushdown transducers. The first - deep pushdown transducers are based on deep pushdown automata.
These transducers can expand non-input pushdown symbols deeper in a pushdown.

The second variant - parallel deep pushdown transducers are based on my previous work - parallel
deep pushdown automata. The main difference is that parallel deep pushdown transducer can expand
n topmost non-input pushdown symbols in only one move between two configurations.

Keywords: parsing, pushdown automata, deep pushdown automata, parallel deep pushdown au-
tomata, state grammars, pushdown transducers, deep pushdown transducers, parallel deep pushdown
transducers

1 INTRODUCTION

If we talk about formal language theory, we usually focus on two core models - grammar and au-
tomaton. In a grammar we aim to generate a string belonging to the language using production rules.
On the other hand, an automaton is supposed to run on some given input sequence and tries to decide
if this input sequence is a string belonging to the language recognized by the automaton. But there
exists one another formal model called transducer. Simply said, transducers are automata which are
enhanced by the possibility to produce some output string while trying to accept input string.

This paper presents two variants of deep pushdown transducers as extended versions of pushdown
transducers - deep pushdown transducers based on deep pushdown automata (Meduna, 2006, see
[7]) and their parallel version parallel deep pushdown transducers based on parallel deep pushdown
automata (Solár, 2012, see [8]). Deep pushdown automata has the possibility to expand a non-input
pushdown symbol deeper in the pushdown, not only on the pushdown top. Parallel deep pushdown
automata are able to expand at most n topmost non-input pushdown symbols in a one move.

2 PRELIMINARIES

This paper assumes that the reader is familiar with the theory of automata and formal languages (see
[1], [2], [3] and [6]).

N+ denotes the set of all positive integers. For an alphabet, Σ, Σ∗ represents the free monoid generated
by Σ under the operation of concatenation. The identity of Σ∗ is denoted by ε. Set Σ+ = Σ∗ −{ε};
algebraically, Σ+ is thus the free semigroup generated by Σ under the operation of concatenation. For
a string w ∈ Σ∗, |w| denotes the length of string w. For W ⊆ Σ , occur(w,W) denotes the number of
occurrences of symbols from W in w. al ph(w) denotes the set of symbols occurring in string w.

A pushdown transducer (see [4]) is a 8-tuple MT = (Q, ΣI , Γ, ΣO, R, s, S, F), where Q is a finite set of
the states, ΣI is an input alphabet, Γ is a pushdown alphabet, ΣO is an output alphabet, ΣI ⊆ Γ, s∈Q is

the start state, S∈ Γ is the start pushdown symbol, F ⊆Q is a set of finite states, Γ and ΣO are pairwise
disjoint. R⊆Q×(ΣI∪{ε})×(Γ∪{ε})×Q×Γ∗×(ΣO∪{ε}). Instead of (p,a,A,q,w,a′)∈ R, where
p,q ∈ Q, a ∈ ΣI , A ∈ Γ−ΣI , w ∈ Γ∗, a′ ∈ ΣO, we usually write r = paA→ qwa′ (r ∈ R) and call r a
rule.

A state grammar (see [5]) is a 4-tuple G = (V,W,T,P,S), where V is a total alphabet, W is a finite set
of states, T ⊆V is an alphabet of terminals, S ∈ (V −T) is the start symbol, and P ∈ (W × (V −T))×
(W ×V+) is a finite relation. Instead of (q,A, p,v) ∈ P, we write (q,A)→ (p,v) ∈ P throughout.

For every z ∈ V ∗, set Gstates(z) = {q | (q,B)→ (p,v) ∈ P, where B ∈ (V −T) ∩ al ph(z), v ∈ V+,
q, p∈W} If (q,A)→ (p,v)∈ P, x,y∈V ∗, Gstates(x)∩{q}=∅, then G makes a derivation step from
(q,xAy) to (p,xvy), symbolically written as (q,xAy)⇒ (p,xvy)[(q,A)→ (p,v)] in G; in addition, if n
is a positive integer satisfying occur(xA,V −T)≤ n, we say that (q,xAy)⇒ (p,xvy) [(q,A)→ (p,v)]
is n-limited, symbolically written as (q,xAy) n⇒ (p,xvy) [(q,A)→ (p,v)]. Usually if there is no
possibility of confusion, we simplify (q,xAy)⇒ (p,xvy) [(q,A)→ (p,v)] to (q,xAy)⇒ (p,xvy) and
(q,xAy) n⇒ (p,xvy) [(q,A)→ (p,v)] to (q,xAy) n⇒ (p,xvy). In the standard manner, we extend⇒ to
⇒m, m≥ 0. Based on⇒m we can define⇒+ and⇒∗. Let n ∈ N+ and α,β ∈ (W ×V) . To express
that every derivation step in α⇒m β, α⇒+ β and α⇒∗ β is n-limited, we write αn⇒m β, αn⇒+ β

and αn⇒∗ β. The language of G, L(G), is defined as L(G) = {w ∈ T ∗ | (q,S)⇒∗ (p,w), q, p ∈W}.
Also, we define for every n ≥ 1, L(G,n) = {w ∈ T ∗ | (q,S) n⇒∗ (p,w), q, p ∈W}. A derivation of
the form (q,S) n⇒∗ (p,w), where q, p ∈W and w ∈ T ∗, represents a successful n-limited generation
of w in G.

A deep pushdown automaton (see [7]) is a 7-tuple dM = (Q, Σ, Γ, R, s, S, F), where d is a maximum
depth at which can be non-input symbol expanded, Q is a finite set of the states, Σ is an input alphabet,
Γ is a pushdown alphabet, Σ⊆ Γ, Γ−Σ contains a special bottom symbol denoted by #, s ∈ Q is the
start state, S∈Γ is the start pushdown state, F ⊆Q is a set of finite states. Sets N, Q and Γ are pairwise
disjoint. R ⊆ (N+×Q× (Γ− (Σ∪{#}))×Q× (Γ−{#})+)

⋃
(N+×Q×{#}×Q× (Γ−{#})∗{#}).

Instead of (m, p,A,q,w)∈ R, where m≤ d, p,q∈Q, A∈ Γ−Σ, w∈ Γ+, we usually write r = mpA→
qw and call r a rule.

A configuration of the deep pushdown automaton dM is a triple Q×Σ∗× (Γ−{#})∗{#}. Let χ be
a set of all configurations of automaton dM and let x,y ∈ χ be two configurations. x ` y is a move
between these two configuration. If x = (p,au,az),y = (q,u,z), where p,q ∈ Q,a ∈ Σ,u ∈ Σ∗,z ∈ Γ∗,
then dM pops its pushdown from x to y, x p` y. dM expands its pushdown if x = (p,au,wAz),y =
(q,au,wvz),r = p(A) ` q(v)∈ R, accordingly to the rule r, symbolically x e` y [p(A)→ q(v)] or x e` y
if there is only one usable rule. In the standard manner we can extend p`, e` and ` to p`m, e`m and
`m, respectively, for m≥ 0. Then based on p`m, e`m and `m, define p`+, p`∗, e`+, e`∗, `+ and `∗.

Let dM be of maximal depth d ∈ N. We define a language accepted by dM as L(dM) = {w ∈
Σ∗ : (s,w,S#) `∗ (f ,ε,#) ∈ dM with f ∈ F}, language accepted by dM by empty pushdown as
LemptyPD(dM) = {w ∈ Σ∗ : (s,w,S#) `∗ (q,ε,#) ∈ dM with q ∈ Q} and language accepted by dM
by entering final state as L f inal(dM) = {w ∈ Σ∗ : (s,w,S#) `∗ (f ,ε,v#) ∈ dM with f ∈ F,v ∈ Γ∗}.

For every state grammar G, and for every n≥ 1, there exists a deep pushdown automaton of depth n,
nM, such that L(G,n) = L(nM).

For every n ≥ 1 and every parallel deep pushdown automaton, nM, there exist a state grammar G,
which generates language accepted by nM, L(G,n) = L(nM).

A parallel deep pushdown automaton (see [8]) is a 7-tuple dMp = (Q,Σ,Γ,R,s,S,F), where d is a
maximum depth at which can be non-input symbol expanded, Q is a finite set of the states, Σ is an
input alphabet, Γ is an pushdown alphabet, Σ ⊆ Γ, Γ−Σ contains a special bottom symbol denoted
by #, s ∈ Q is the start state, S ∈ Γ is the start pushdown state, F ⊆ Q is a set of finite states. Sets N,

Q and Γ are pairwise disjoint.

R ⊆ Q×
(
(Γ− (Σ∪ {#}))1× (Γ− (Σ∪ {#}))2× . . .× (Γ− (Σ∪ {#}))n

)
×Q×

(
((Γ−{#})+)1×

((Γ−{#})+)2× . . .× ((Γ−{#})+)n
)⋃

Q×
(
(Γ− (Σ∪{#}))1× (Γ− (Σ∪{#}))2× . . .× (Γ− (Σ∪

{#}))n−1× ({#})n
)
×Q×

(
((Γ−{#})+)1× ((Γ−{#})+)2× . . .× ((Γ−{#})+)n−1× ({#})n

)
Instead of

(
p,(A1, . . . ,An),q,(w1, . . . ,wn)

)
∈ R, where n ≤ d, p,q ∈ Q, Ai ∈ Γ− (Σ∪ {#}), wi ∈

(Γ−{#})+, 1≤ i < n,
(
An ∈ Γ−(Σ∪{#})∧wn ∈ (Γ−{#})+

)
∨
(
An = {#}∧wn = {#})

)
, we usually

write r = p(A1, . . . ,An)→ q(w1, . . . ,wn) and call r a rule.

For every state grammar G, and for every n≥ 1, there exists a deep pushdown automaton of depth n,
nMp, such that L(G,n) = L(nMp).

For every n ≥ 1 and every parallel deep pushdown automaton, nMp, there exist a state grammar G,
which generates language accepted by nMp, L(G,n) = L(nMp).

3 DEFINITIONS

In this section we look at the definitions of presented deep pushdown transducers.

3.1 DEEP PUSHDOWN TRANSDUCER

The deep pushdown transducer differs from the standard pushdown transducer by possibility to ex-
pand non-input pushdown symbols deeper in the pushdown.

A deep pushdown transducer is a 8-tuple dMT = (Q, ΣI , Γ, ΣO, R, s, S, F), where d is a maximum
depth at which can be non-input symbol expanded, Q is a finite set of the states, ΣI is an input alphabet,
Γ is an pushdown alphabet, ΣI ⊆ Γ, ΣO is an output alphabet, ΣO 6⊆ Γ, Γ−ΣI contains a special bottom
symbol denoted by #, s ∈ Q is the start state, S ∈ Γ is the start pushdown symbol, F ⊆ Q is a set of
finite states. Sets N, Q, Γ and ΣO are pairwise disjoint.

R ⊆ (N+×Q× (Γ− (ΣI ∪{#}))×Q× (Γ−{#})+× (ΣO ∪{ε}))
⋃
(N+×Q× (Γ− (ΣI ∪{#}))×

Q× (Γ−{#})∗×ΣO)
⋃
(N+×Q×{#}×Q× ((Γ−{#})∗{#})× (ΣO∪{ε}))

⋃
(N+×Q×{#}×Q×

(((Γ−{#})∗{#})∪{ε})×ΣO). Instead of (m, p,A,q,w,a′) ∈ R, where m ≤ d, p,q ∈ Q, A ∈ Γ−ΣI ,
w ∈ Γ+, a′ ∈ ΣO∪{ε}, we usually write r = mpA→ qwa′ and call r a rule.

A configuration of the deep pushdown transducer dMT is a 4-tuple Q× (ΣI)
∗× (Γ−{#})∗{#}×

(ΣO)
∗. Let χ be a set of all configurations of deep pushdown transducer dMT and let x,y ∈ χ be two

configurations. x` y is a move between these configuration. If x=(p,au,az,b),y=(q,u,z,bc), where
p,q ∈ Q,a ∈ ΣI,u ∈ (ΣI)

∗,z ∈ Γ∗,b,c ∈ (ΣO)
∗, then dMT pops its pushdown from x to y, x p` y. dMT

expands its pushdown if x = (p,au,wAz,b),y = (q,au,wvz,bc),r = p(A)→ q(v)c ∈ R, accordingly
to the rule r, symbolically written x e` y[p(A)→ q(v)c] or x e` y if there is only one usable rule. In
the standard manner we can extend p`, e` and ` to p`m, e`m and `m, respectively, for m≥ 0. Then
based on p`m, e`m and `m, define p`+, p`∗, e`+, e`∗, `+ and `∗.

We can define a language accepted by dMT as LAcc(dMT) = {w ∈ (ΣI)
∗ : (s,w,S#,ε) `∗ (f ,ε,#,u) ∈

dMT with f ∈F,u∈ (ΣO)
∗} and a language generated by dMT as LGen(dMT)= {u∈ (ΣO)

∗ : (s,w,S#,ε)
`∗ (f ,ε,#,u) ∈ dMT with f ∈ F,w ∈ (ΣI)

∗}. In the same manner we can define a language accepted
by dMT by empty pushdown as LAcc

emptyPD(dMT) = {w ∈ (ΣI)
∗ : (s,w,S#,ε) `∗ (q,ε,#,u) ∈ dMT with

u ∈ (ΣO)
∗}, a language generated by dMT by empty pushdown as LGen

emptyPD(dMT) = {u ∈ (ΣO)
∗ :

(s,w,S#,ε) `∗ (q,ε,#,u) ∈ dMT with w ∈ (ΣI)
∗}, a language accepted by dMT by entering the fi-

nal state as LAcc
f inal(dMT) = {w ∈ (ΣI)

∗ : (s,w,S#,ε) `∗ (f ,ε,v#,u) ∈ dMT with f ∈ F,v ∈ Γ∗,u ∈
(ΣO)

∗} and a language generated by dMT by entering the final state as LGen
f inal(dMT) = {u ∈ (ΣO)

∗ :
(s,w,S#,ε) `∗ (f ,ε,v#,u) ∈ dMT with f ∈ F,v ∈ Γ∗,w ∈ (ΣI)

∗}.

3.2 PARALLEL DEEP PUSHDOWN TRANSDUCER

The parallel deep pushdown transducer differs from a deep pushdown transducer by possibility to
expand several topmost non-input pushdown symbols in one move. This is achieved by the form of
rules. Each rule is a composition of simpler rules. The first non-input pushdown symbol in the rule
corresponds to the topmost non-input symbol on the pushdown, the second non-input pushdown sym-
bol corresponds to the second topmost non-input symbol on the pushdown, etc. up to the maximum
depth of this rule which is less or equal to the maximum possible depth specific to this transducer.
The numbering of non-input symbols on the pushdown coincides with the state before applying of the
rule. The rule can be used only if there is a sufficient count of non-input symbols on the pushdown
and their arrangement is identical with arrangement of these symbols in the rule.

A parallel deep pushdown transducer is a 8-tuple dMT
p = (Q, ΣI , Γ, ΣO, R, s, S, F), where d is a

maximum depth at which can be non-input symbol expanded, Q is a finite set of the states, ΣI is an
input alphabet, Γ is an pushdown alphabet, ΣI ⊆ Γ, ΣO is an output alphabet, ΣO 6⊆ Γ, Γ−ΣI contains
a special bottom symbol denoted by #, s ∈ Q is the start state, S ∈ Γ is the start pushdown symbol,
F ⊆ Q is a set of finite states. Sets N, Q, Γ and ΣO are pairwise disjoint.

R ⊆ Q×
(
(Γ− (ΣI ∪{#}))1× (Γ− (ΣI ∪{#}))2× . . .× (Γ− (ΣI ∪{#}))n

)
×Q×

(
((Γ−{#})+)1×

((Γ−{#})+)2× . . .× ((Γ−{#})+)n
)
× (ΣO)

∗ ⋃ Q×
(
(Γ− (ΣI ∪{#}))1× (Γ− (ΣI ∪{#}))2× . . .×

(Γ− (ΣI ∪ {#}))n−1 × ({#})n
)
×Q×

(
((Γ− {#})+)1 × ((Γ− {#})+)2 × . . .× ((Γ− {#})+)n−1 ×

({#})n
)
× (ΣO)

∗

Instead of (p,(A1, . . . ,An),q,(w1, . . . ,wn),a′) ∈ R, where n ≤ d, p,q ∈ Q, Ai ∈ Γ− (ΣI ∪{#}), wi ∈
(Γ−{#})+, 1≤ i< n,

(
An ∈ Γ−(ΣI∪{#})∧wn ∈ (Γ−{#})+

)
∨
(
An = {#}∧wn = {#})

)
, a′ ∈ (ΣO)

∗,
we usually write r = p(A1, . . . ,An)→ q(w1, . . . ,wn)a′ and call r a rule.

A configuration of the parallel deep pushdown transducer dMT
p is a 4-tuple Q×(ΣI)

∗×(Γ−{#})∗{#}×
(ΣO)

∗. A move between two configurations, sequence of moves and definitions of languages accepted
or generated by parallel deep pushdown transducer are the same as at deep pushdown transducers -
see section 3.1.

4 RESULTS

4.1 ACCEPTED LANGUAGE

Theorem 1 For every n ≤ 1 and for every language L, L = L(G,n) for a state grammar, G, if and
only if L = LAcc(nMT).

Theorem 2 For every n ≤ 1 and for every language L, L = L(G,n) for a state grammar, G, if and
only if L = LAcc

emptyPD(dMT).

Theorem 3 For every n ≤ 1 and for every language L, L = L(G,n) for a state grammar, G, if and
only if L = LAcc(nMT

p).

Theorem 4 For every n ≤ 1 and for every language L, L = L(G,n) for a state grammar, G, if and
only if L = LAcc

emptyPD(dMT
p).

Proof These four Theorems follows from Theorems 1 and 2 in [7], Theorems 1 and 2 in [8] and from
the fact that automata are transducers whose output components are ignored.

5 CONCLUSION

In this paper two new extensions of pushdown transducers were presented. These new transducers
work exactly as automata they are based on. They can expand non-input pushdown symbols deeper

in the pushdown. According to the maximal depth used in rules we can get the same infinite hierarchy
of languages between context-free and context-sensitive languages as is defined by state grammars.

5.1 OPEN PROBLEMS

5.1.1 DETERMINISM

This paper has discussed two versions of deep pushdown transducers and parallel deep pushdown
transducers which work nondeterministically. The future investigation of these transducers should
pay a special attention to their deterministic versions, which fulfill a crucial role in practice.

5.1.2 GENERATED LANGUAGE

Another future investigation should be paid to the classification of languages generated by deep push-
down transducer and parallel deep pushdown transducer.

5.1.3 GENERALIZATION

Throughout this paper, we considered only true pushdown expansions when non-input pushdown
symbol is replaced with nonempty string. What is the language family defined by deep pushdown
transducer or parallel deep pushdown transducer generalized in the sense of replacing pushdown
symbols with an empty string?

ACKNOWLEDGEMENT

This work was partially supported by the BUT FIT grant FIT-S-11-2 and the research plan MSM
0021630528.

REFERENCES

[1] Aho, A. V., Ullman, J. D.: The Theory of Parsing, Translation and Compiling, Volume I: Parsing,
Prentice Hall, Englewood Clifs, New Jersey, 1972, ISBN 0139145567

[2] Autebert, J., Berstel, J., Boasson, L.: Context-free languages and pushdown automata. In: Rozen-
berg, G., Salomaa, A., (eds.) Handbook of Formal Languages, vol. 1. Springer, 1997, ISBN 978-
3540604204

[3] Dassow, J., Paŭn, G.: Regulated Rewriting in Formal Language Theory. AkademieVerlag, Berlin,
1989, ISBN 978-0387514147

[4] Gurari, E.: An Introduction to the Theory of Computation, Computer Science Press, 1989, ISBN
0-7167-8182-4

[5] Kasai, T.: An hierarchy between context-free and context-sensitive languages. In: Journal of
Computer and System Sciences vol. 4, pp. 492–508, 1970, ISSN 0022-0000

[6] Meduna, A.: Automata and Languages: Theory and Applications. Springer, London, 2000, ISBN
978-1852330743

[7] Meduna, A.: Deep Pushdown Automata. In: Acta informatica, vol. 98, pp. 114–124, 2006, ISSN
0001-5903

[8] Solár, P.: Parallel Deep Pushdown Automata. In: Proceedings of the 18th Conference STUDENT
EEICT 2012, pp. 410-414, VUT v Brně, Brno, 2012, ISBN 978-80-214-4462-1

