
ANALYSIS OF SELECTED RTOS CHARACTERISTICS

Lukáš Otava

Master Degree Programme (2), FEEC BUT

E-mail: xotava01@stud.feec.vutbr.cz

Supervised by: Pavel Kučera

E-mail: kucera@feec.vutbr.cz

Abstract: This paper is focused on a comparison of the basic characteristics of the selected real-time

operating systems (RTOS). Three different RTOS (CoOS, FreeRTOS, uC/OSIII), running on the same

Cortex-M3 HW configuration, were selected. The results of such experiments are rarely presented in

the technical articles or specifications. The comparison is based on measurements of the basic time

parameters including an overhead of the RTOS core and an implementation of the timer functionality.

The best suited RTOS with the most reliable results will be utilized in the robot’s control system.

Keywords: Cortex-M3, RTOS performance, RTOS measurement, context switching time, timer

1 INTRODUCTION

With an increasing power on the one hand, and decreasing price of nowadays microcontrollers on

the other hand, more attention is focused onto the software part of the control systems (called firm-

ware in embedded solution). There is a trend of integration many undemanding subsystems into the

one high power microcontroller in the recent years. Therefore a problem of uniform utilization of

the shared resources in the microcontroller has to be maintained. Program memory and data memory

together with a computing power are typical examples of the most important shared resources of the

microcontrollers. In complex control systems, there are many tasks that must be executed apparently

concurrently with the time constraints. There are also requirements on time-restricted reactions on

external the events (called interrupts). System that performs these requirements in time-deterministic

way are known as real time operating systems (RTOS). RTOS help to keep even complex computati-

onal problems relatively clear.

This paper is focused on comparison of the basic characteristics of three different RTOS running on

the same hardware. Such results are not usually published in the RTOS specifications or in the tech-

nical articles. Different results are expected according to the different implementation of the RTOS

kernels. The best suited RTOS with the most reliable results will be implemented as a firmware of

a robotic vehicle with a differential drive. Control system block diagram is shown in Figure 1. This

control system was constructed at the Department of Control and Instrumentation, BUT. The photo

of this system is shown in Figure 2.

2 RTOS CHARACTERISTIC MEASUREMENT

There are many available solutions of RTOS systems suited for ARM Cortex-M3 architecture[1] on

the market. CooCox CoOS, Real Time Engineers FreeRTOS and Micrium uC/OSIII were selected for

measurements as comparable systems (similar range of features). CoOS represents small RTOS avai-

lable only for Cortex-M3 architecture. FreeRTOS represents open-source solution available for 33 ar-

chitectures of microcontroller based systems[2]. uC/OSIII represents commercial product. Overhead

of different RTOS kernels is comprised in the remaining tests. The overhead is determined mostly by

a context switching time and a kernel operations time (tasks scheduling, objects synchronization). All

tests are performed with 40MHz microcontroller clock frequency. Microcontroller code is compiled

����������	
�

���

����

��

����

���������	��

��

���

��������

�	
�

� �!��"�����

#�$�%�&�&�'(

�������)� ��*��

#��%+
'��,�(

!�
*
�!
-�
�
�.
��
�

#/
0
1
'
$
�
,
�
0
+
(

������)���.� �

��2�"��"23!�

#"4��")�!(

$5���-�	��

��2�"��"23!�

1�,�67%�
#�����"���8��,(

���9�!�:�2�4";����344!<

#���=-�0,,>��
�+�&7(
9�����<

�84�)��")� "))� �"��

#�7>��=&(

3���

�;�� ��?�1��

-9��2@���=

#��,,66/(

�"�"��
�) �����)��!

���)�"��

 3���)���)2

*"!��@����)��

-9��2@����

#��,,66/(

��,A,�'��������+�'

Figure 1: Block diagram of control system Figure 2: Differential drive robot

with GCC 4.6.2 in CoIDE 1.6 development tool with Thumb-2 instruction set. All test are performed

with RTOS scaled to a minimal configuration.

2.1 MEASUREMENT OF THE CONTEXT SWITCHING TIME OVERHEAD

A context switch is an operation of the kernel that switches the CPU core from one task to another.

The context switch together with object synchronization are the most often executed operations that

are reflected in RTOS kernel overhead.

For the measurement purposes, there are two tasks running in the, one is with high and one is with the

low priority. The time, when the high priority task is waiting for the low priority task (using mutex or

queue) is measured by a HW timer in the microcontroller. Only two synchronization objects are tested

from many others that are provided by selected RTOS. Resulting time incorporates kernel overhead.

Timer is clocked by an external reference generator Agilent 33120. Histogram of 1000 measurements

is shown in Figure 3. Expanded uncertainty of the measurement is 0.0642 µs with 95% confidence.

���������� �����
�

���

���

	��

��

����
��
�

���
�������

��

�
�

�
�
�

����� !�"�#�$���������

%�

&'��� !�"�#�$���������

��(��)))� !�"�#�$���������

���������* �����
�

���

���

	��

��

����
+��
,

���
�������

��

�
�

�
�
�

����� !�"�#�$���	

-����

%�

&'��� !�"�#�$���	�
-����

��(��)))� !�"�#�$��

-����

Figure 3: Frequency histograms of context switching times with synchronization waiting

2.2 SW TIMER MEASUREMENT

Software timer implementation is comprised by a deviation of individual period of the SW timer.

This deviation is commonly called jitter. This period is measured by a HW timer in the microcon-

troller clocked by a reference generator Agilent 33120. There is an additional task with a dummy

computation load in this test. Frequency histogram for 7000 measurements is shown in Figure 4.

Expanded uncertainty of the measurement is 0.192 µs with 95% confidence.

������ ������ ������

����

����

����

	
��
��������

��

�
�

�
�
�

�
������ �!�"�#�$
%����

&�

'(������ �!�"�#�)
%����

��*��+++���� �!�"����
%)���

Figure 4: SW timer period histogram

Absolute timing comparison among selected RTOS was performed too. An aliasing effect based me-

asurement was performed with a sampled triangle reference signal. The performed tests verifies that

the timer functionality, from the absolute timing point of view, is implemented identically and the

deviation of the timer period is caused mainly by the used crystal oscillator.

The amount of code memory needed by the tests is summarized in the Table 1.

Table 1: Code size comparison
code size [B] CoOS FreeRTOS µC/OSIII

queue waiting 6860 7988 10388

mutex waiting 7236 6928 9864

SW timer abs. timing 15144 16776 12908

SW timer rel. timing 14936 16565 12708

3 CONCLUSION

In this paper a description and test results of the selected RTOS characteristics are presented. The

context switching time, acquired by waiting for the synchronisation object of mutex and queue, was

measured for three different RTOS running on the same hardware. For each experiment the measu-

rement uncertainity was determined. There are some visible differences in times and their dispersion

in 1000 measurements among RTOS. The shortest time and dispersion was measured for FreeRTOS.

Context switch time of uC/OSIII is longer but with lower dispersion than CoOS.

Implementation of SW timer is compared by timer period dispersion from 7000 measurements. SW

timer period jitter is characterized by these measurements. Utilization Agilent 33120 as a reference

time base resulted in a reduction of the measurement uncertainty to the minimum. CoOS and FreeR-

TOS showed the best results with the lowest period dispersion.

To sum up, FreeRTOS can be pronounced as the best performed from the presented comparison. The-

refore it was used as basis for a control system of a robotic vehicle. However general recommendation

could not be declared as the best suited RTOS is strictly depended on the chosen HW platform and

running tasks.

REFERENCE

[1] Yiu Joseph. The Definitive Guide to the ARM Cortex-M3, Second Edition. Burlington: Newnes, 2009.

[2] Barry R. FreeRTOS API Reference [online]. 2010, [cit. 24.4.2012]. Available at URL:

<http://www.freertos.org/a00106.html>.

