
EFFICIENT ALGORITHMS FOR FINITE AUTOMATA

Martin Hruška
Bachelor Degree Programme (3), FIT BUT

E-mail: xhrusk16@stud.fit.vutbr.cz

Supervised by: Ondřej Lengál
E-mail: ilengal@fit.vutbr.cz

Abstract: Nondeterministic finite automata (NFA) are used in many areas of computer science, in-
cluding, but not limited to, formal verification, or the design of digital circuits. Their advantages over
deterministic finite automata (DFA) is that they may be exponentially conciser. However, this advan-
tage may be lost if a naïve approach to some operations, in particular checking language inclusion,
which performs explicit determinization of the NFA, is taken. Recently, several new techniques for
this problem that avoid explicit determinization (using the so-called antichains or bisimulation up to
congruence) have been proposed. The main goal of this paper is to describe these techniques which
are being implemented as the new extension for the VATA library.

Keywords: finite automata, formal verification, language inclusion, bisimulation up to congruence,
antichains, simulation

1 INTRODUCTION

A finite automaton (FA) is a computation model with applications in different branches of computer
science, e.g., compiler design, formal verification or the design of digital circuits. In formal veri-
fication alone are its uses abundant, e.g., in model checking of safety temporal properties, abstract
regular model checking [2], static analysis, or decision procedures of some logics, such as Presburger
arithmetic or weak monadic second-order theory of one successor (WS1S) [4].

Many of the mentioned applications need to perform certain expensive operations on FA, such as
checking universality of an FA (i.e., checking whether it accepts any word over a given alphabet), or
checking language inclusion of a pair of FA (i.e., testing whether the language of one FA is a subset
of the language of the second FA). The classical (so called textbook) approach is based on comple-
mentation of the language of an FA [1]. Complementation is easy for deterministic FA (DFA)—just
swapping accepting and non-accepting states—but a hard problem for nondeterministic FA (NFA),
which need to be determinized first (this may lead to an exponential explosion in the number of the
states of the automaton). Both mentioned operations over NFA are PSPACE-complete problems [1].

Recently, there has been a considerable advance in techniques for dealing with these problems. The
new techniques are either based on the so-called antichains [1, 2] or the so-called bisimulation up
to congruence [3]. In general, those techniques do not need an explicit construction of the comple-
ment automaton. They only construct a sub-automaton which is sufficient for either proving that the
universality or inclusion hold, or finding a counterexample.

Unfortunately, there is currently no efficient implementation of a general NFA library that would use
the state-of-the-art algorithms for the mentioned operations on automata. The closest implementation
is VATA [4], a general library for nondeterministic finite tree automata, which can be used even for
NFA (being modelled as unary tree automata) but not with the optimal performance given by its
overhead that comes with the ability to handle much richer structures.

The goal of this work is two-fold: (i) extending VATA with an NFA module implementing basic

operations on NFA, such as union, intersection, or checking language inclusion, and (ii) an efficient
design and implementation of checking language inclusion of NFA using bisimulation up to congru-
ence (which is missing in VATA for tree automata).

2 PRELIMINARIES

We call a finite set of symbols Σ an alphabet. A word w over Σ of length n is a finite sequence of
symbols w = a1 . . .an, where ∀1 ≤ i ≤ n .ai ∈ Σ. A nondeterministic finite automaton (NFA) is a
quintuple A = (Q,Σ,δ, I,F), where Q is a finite set of states, Σ is an alphabet, δ ⊆ Q×Σ×Q is a
transition relation (we use p a−→ q to denote that (p,a,q) ∈ δ), I ⊆Q is a set of initial states and F ⊆Q
is a set of final states. A deterministic finite automaton (DFA) is a special case of an NFA, where δ

is a partial function δ : Q×Σ→ Q and |I| ≤ 1. A run of an NFA A = (Q,Σ,δ, I,F) from a state q
over a word w = a1 . . .an is a sequence r = q0 . . .qn, where ∀0 ≤ i ≤ n . qi ∈ Q such that q0 = q and
(qi,ai+1,qi+1) ∈ δ. The run r is called accepting iff qn ∈ F . The language of state q ∈Q is defined as
LA(q) = {w ∈ Σ∗ | there exists an accepting run of A from q over w}, while the language of a set of
states R⊆Q is defined as LA(R) =

S
q∈R LA(q). The language of an NFA A is defined as LA = LA(I).

3 CHECKING LANGUAGE INCLUSION OF NFA

Given a pair of automata A = (Q1,Σ,δ1, I1,F1) and B = (Q2,Σ,δ2, I2,F2), the textbook algorithm for
checking inclusion of their languages LA ⊆ LB works by first determinizing B (yielding the DFA
Bdet), complementing it (Bdet) and constructing the NFA A ×Bdet accepting the intersection of LA
and LBdet

and checking whether its language is nonempty. Any accepting run in this automaton may
serve as a witness that the inclusion between A and B does not hold. Some recently introduced
approaches avoid the explicit construction of Bdet and the related state explosion in many cases.

3.1 ANTICHAINS

We define an antichain and simulation before describing the algorithm itself. Given a partially ordered
set Y , an antichain is a set X ⊆Y such that all elements of X are incomparable. A forward simulation
on the NFA A is a relation � ⊆ Q1×Q1 such that if p � r then (i) p ∈ F1 ⇒ r ∈ F1 and (ii) for
every transition p a−→ p′, there exists a transition r a−→ r′ such that p′ � r′. Note that simulation implies
language inclusion, i.e., p� q⇒ LA(p)⊆ LA(q).

The antichains algorithm [1] starts searching for a final state of the automaton A×Bdet while pruning
out the states which are not necessary to explore. A is explored nondeterministically and B is grad-
ually determinized, so the algorithm explores pairs (p,P) where p ∈ Q1 and P⊆ Q2. The antichains
algorithm derives new states along the product automaton transitions and inserts them to the set of
visited pairs X . X keeps only minimal elements with respect to the ordering given by (r,R) v (p,P)
iff r = p∧R ⊆ P. If there is generated a pair (p,P) and there is (r,R) ∈ X such that (r,R) v (p,P),
we can skip (p,P) and not insert it to X for further search.

An improvement of the antichains algorithm using simulation [2] is based on the following optimiza-
tion. We can stop the search from a pair (p,P) if either (a) there exists some already visited pair (r,R)
such that p� r∧∀r′ ∈ R∃ p′ ∈ P : r′ � p′, or (b) there is p′ ∈ P such that p� p′.

3.2 BISIMULATION UP TO CONGRUENCE

Another approach to checking language inclusion of NFA is based on bisimulation up to congru-
ence. This technique was originally developed for checking equivalence of languages of automata
but it can also be used for checking language inclusion, based on the observation that LA ∪ LB =
LB ⇔ LA ⊆ LB . This approach is based on the computation of a congruence closure c(R) for

some binary relation on states of the determinized automaton R ⊆ 2Q × 2Q defined as a relation
c(R) = (r∪ s∪ t ∪ u∪ id)ω(R), where id(R) = R, r(R) = {(X ,X) | X ⊆ Q}, s(R) = {(Y,X) | XRY},
t(R) = {(X ,Z) | ∃Y ⊆ Q, XRY RZ}, u(R) = {(X1∪X2,Y1∪Y2) | X1RY1∧X2RY2}.

The congruence algorithm works on a similar principle as the antichains algorithm. It starts building
Adet and Bdet and checks if macrostates in generated pairs are both final or not. The optimization
used is based on computing congruence closure of the set of already visited pairs of macrostates. If
the generated pair is in this congruence closure, it can be skipped and further not processed.

Comparing the mentioned approaches to the checking language inclusion can be seen in Figure 1.

Congruence

a

ba

a a

a,b

a

a

a,b

NFA A

NFA B

a

Classical

a a

a

Antichain

Optimization a

a

a a b

a a

Optimization b

a

a a

Figure 1: The picture is based on an example from [2]. It shows the procedure of checking language
inclusion between two NFA using the mentioned approaches (which correspond to the labeled areas).
The antichain algorithm reduces number of the generated states compared with the classical, e.g.,
(p2,{q1,q2}) is not further explored because (p2,{q2}) v (p2,{q1,q2}). The optimization a and
b are improvements of the antichain algorithm using simulation. The congruence algorithm also
reduces number of the generated states, so ({p1, p2},{q1,q2}) is not further explored because it is in
congruence closure of the set of visited states.

4 CONCLUSION

This paper briefly describes new approaches to checking language inclusion of NFA. These algo-
rithms are being implemented in the new extension for finite automata manipulation of VATA library.

ACKNOWLEDGEMENT

This work was supported by the Czech Science Foundation within the project No. P103/10/0306.

REFERENCES

[1] M. De Wulf, L. Doyen, T.A. Henzinger and J.-F. Raskin Antichains: A New Algorithm for Check-
ing Universality of Finite Automata. In Proc. of CAV 2006. Springer-Verlag (2006).

[2] P.A. Abdulla, Y.-F. Chen, L. Holík, R. Mayr and T. Vojnar. When Simulation Meets An-
tichains: On Checking Language Inclusion of Nondeterministic Finite (Tree) Automata. In Proc.
of TACAS 2010. Springer-Verlag (2010).

[3] F. Bonchi and D. Pous. Checking NFA Equivalence with Bisimulations up to Congruence. In
Proc. of POPL 2013. ACM (2013).

[4] O. Lengál, J. Šimáček and T. Vojnar. VATA: A Library for Efficient Manipulation of Non-
deterministic Tree Automata. In Proc. of TACAS 2012. Springer-Verlag (2012).

	Introduction
	Preliminaries
	Checking language inclusion of NFA
	Antichains
	Bisimulation up to congruence

	Conclusion

