
MEMORY CONSUMPTION OF CLASSICAL AND LAZY
SCATTERED CONTEXT GRAMMAR PARSER

Ota Jirák
Doctoral Degree Programme (5), FIT BUT

E-mail: xjirak03@stud.fit.vutbr.cz

Supervised by: Dušan Kolář
E-mail: kolar@fit.vutbr.cz

Abstract: In this paper, the space complexity of two scattered context grammar (SCG) parser im-
plementations are studied. The classical and lazy SCG parsers are analyzed. The dependency of
the memory consumption on an input data size is provided. A space complexity dependency on a
grammar is demonstrated using several examples.

Keywords: SCG, parser, lazy, memory consumption, space complexity, comparison.

1 INTRODUCTION

In [1], both deep and lazy approaches of scattered context grammar (SCG) parser are compared from
the time complexity point of view. In this paper, the space complexity point of view is discussed. A
similar dependency of memory consumption on the size of the input data is presented.

At first, basic definitions are given. The description of a measurement procedure follows. The next
section demonstrates a computation of a memory complexity dependency on the size of an input data.
Finally, the generalization of the space complexity functions is proposed.

2 DEFINITIONS

It is expected that the reader is familiar with the formal languages [2]. In this section, definitions of
scattered context grammar (SCG, [3]), deep expanded pushdown automaton (DEPDA, [4, 5]), and
lazy pushdown automaton (LPDA, [5]) are provided.

Definition 1 (Scattered Context Grammar - SCG [3]) SCG is a quadruple G = (V,T,P,S), where
V is a total alphabet, T ⊂V is the set of terminals, P is a finite set of rules of the form (A1,A2, . . . ,An)→
(x1,x2, . . . ,xn), where n≥ 1, Ai ∈V\T , and xi ∈V ∗, for all 1≤ i≤ n, S ∈V\T is the start symbol of
G. An scg rule is an n-tuple of context-free rules.

If u = u1A1 . . .unAnun+1, v = v1x1 . . .vnxnvn+1, and p = (A1, . . . ,An)→ (x1, . . . ,xn) ∈ P, where ui,vi ∈
V ∗, for all 1 ≤ i ≤ n+ 1, then G makes a derivation step from u to v according to p, symbolically
written as u⇒ v. In addition, if Ai does not occure in ui for all 1≤ i≤ n, then the derivation step is
leftmost.

Definition 2 (Generation) Let G = (V,T,P,S), be an SCG. Let u1, . . . ,un ∈V ∗, p1, . . . , pn ∈ P, S⇒1
u1⇒2 · · · ⇒i ui⇒ ··· ⇒n un be a sequence of leftmost derivations. Relation⇒i represents the i-th
derivation step. The generation of the symbol is the number of derivation step when the symbol was
appeared. The generation of the rule is the number of derivation step when the rule was used. The
initial content of the pushdown has the generation zero.

Definition 3 (Deep Expanded PDA - DEPDA [4, 5]) Let M = (Q,Σ,Γ,δ,s,S,F), be a pushdown
automaton (PDA, [2]) used for parsing of context free grammar (CFG, [2]) with an LL(1) table.
The DEPDA is the PDA that processes the scg rules and expands deep in the pushdown. The LL-table
is modified so as to be able to choose scg rule.

The operation expansion is modified as follows. The LL-table chooses the scg rule based on the
topmost nonterminal of the pushdown and the terminal under the reading head. All the left-hand
side nonterminals from the context-free rules from the scg rule are selected in the pushdown and
automatically rewriten. The leftmost derivation is used.

Definition 4 (Lazy PDA - LPDA [5]) Let M = (Q,Σ,Γ,δ,s,S,F) be the PDA used for parsing of
CFG with the LL-table. LPDA is the automaton M with a few modifications. A symbol in the pushdown
is a pair 〈s,gen〉 where the gen is a generation of the symbol s,s ∈ Γ. The LL-table is modified so as
to be able to choose scg rule. A structure called delay-bag is added. This structure keeps information
about the partially processed rules. All the information of one postponed scg rule is stored in a
structure called item. The item is of the form <the scg rule, the index to the first unprocessed part,
the generation of the rule>.

The operation expansion is modified as follows. First, the delay-bag is searched to determines the
postpone rule. The oldest rule applicable on the topmost symbol of the pushdown is chosen from the
delay-bag. If the delay-bag does not return scg rule the LL-table is searched. The first unprocessed
context-free rule from the returned scg rule is processed. If there remain some unprocessed rules, the
scg rule is postponed. A delay-bag item is inserted, or updated so it refers to the first unprocessed
context-free rule from the scg rule.

3 MEASUREMENTS

The memory profiler valgrind [6] is used to obtain the memory consumption of a running algorithm.
Valgrind plugin called massif is used for heap profiling. Each allocation and deallocation is logged. A
log record contains the size of the allocated memory and/or the detailed stack trace. The measurement
was conducted on Intell R© CoreTM2 Duo CPU E8400 3.00 GHz with 32–bit Debian Linux 2.6.32-5-
686, GCC 4.4.5.

The stack traces are used in the process of the identification of particular allocations in the log file. For
more detailed information in the stack traces, analyzed program must be compiled with debugging
information. After the identification process, less detailed logs can be used. The next measured data
was used for confirmation of identified dependencies.

The measured values contain the size of the input data and the size of the memory representation
of the grammar. These values are the overhead of encapsulating program. Therefore, they must be
subtracted to get the maximum amount of the memory used only by the algorithm.

4 EXAMPLES

In this section, examples and derived space complexity functions are presented. Two algorithms are
described: Deep (D) and Lazy (L), respectively. The first character in the function name indicates
the algorithm. The second character indicates the implementation of the pushdown: Array (A) and
Linked List (L), respectively.

Example 1. We measured for SCG G1 = (N,T,P1,S),N = {A,B,C,S},T = {a,b,c},P1 = {1 : (S)→
(ABC), 2 : (A,B,C)→ (aA,bB,cC), 3 : (A,B,C)→ (ε,ε,ε)}.

The input data are in the form anbncn. The size of the valid input, |x|, is |anbncn| = 3n. Therefore,
n = x

3 . For DEPDA, the length of pushdown is |aAbnBcnC$| = 2n+ 5 = 2x
3 + 5. $ is the bottom

0

10

20

30

40

50

60

70

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

m
em

or
y
[1
06
B
]

input [106B]

measured DA1
measured LA1
DA opt1(x)
DA1(x)
LA1(x)

Figure 1: G1 memory consumption

symbol (stopper) in the pushdown.

The array implementation has an initial size (2, in this case) and doubles its size, when more space is
needed. Therefore, the size is proportional to 2dlog2(

2x
3 +5)e.

For LPDA, the length of pushdown is given by the size of |aABC$|= 5. The number of delayed rules
(S⇒ ABC⇒n anABC⇒ anBC) is n+1 = x

3 +1.

Using static analysis, functions describing maximum memory consumption (without grammar and
input) for G1 were derived from measured data:

DA1(x) = 12 ·2dlog2(
2x
3 +5)e+28 (1a)

DL1(x) = 8x+64 (1b)

LA1(x) = 12x+296 (1c)

LL1(x) = 12x+268 (1d)

Based on the knowledge of the grammar and based on the knowledge of the input data size, the size
of the array can be optimized to:

DA_opt1(x) = 8x+88 (1e)

LA_opt1(x) = 12x+220 (1f)

In Figure 1, there are dependencies of measured data, functions DA1,DA_opt1,LA1 on the input data
size. Function DL1 is similar to DA_opt1, therefore only DA_opt1 is presented. Functions DL1,LL1,
and LA_opt1 are not presented in Figure 1, because they overlap with the other presented functions.

The memory consumption for G1 is better for the DEPDA. The size of the bag item memory repre-
sentation (the structure for storing data in delay-bag) is bigger than the size of the pushdown item
memory representation.

Because of saved pushdown space, LPDA memory consumption is lower in the case of long rules.
This case is illustrated in Example 2. (see equations (2) and Figure 2).

Example 2. SCG G2 =(N,T,P,S),N = {A,B,C,S},T = {a,b,c},P= {1 : (S)→ (ABC),2 : (A,B,C)→
(a50A,b50B,c50C),3 : (A,B,C)→ (ε,ε,ε)}.

For DEPDA, the length of pushdown is given by the size of |a50Ab50nBc50nC$|. For LPDA, the
length of the pushdown is given byt the size of |a50ABC$|. The number of postponed rules is n+ 1,
where n = x

150 . Using static analysis, functions describing maximum memory consumption (without
grammar and input) for G2 were derived from measured data:

DA2(x) = 12 ·2dlog2(
2x
3 +54)e+28 (2a)

DL2(x) = 8x+652 (2b)

LA2(x) = 0.24x+1192 (2c)

LL2(x) = 0.24x+900 (2d)

DA_opt2(x) = 8x+676 (2e)

LA_opt2(x) = 0.24x+1032 (2f)

In Figure 2, there are dependencies for grammar G2. In this case, the lazy approach has significantly
smaller memory complexity. Functions DL2,LL2,LA_opt2 are not presented in Figure 2, because they
overlap with the other presented functions.

The change of the second rule (from (A,B,C)→ (aA,bB,cC) to (A,B,C)→ (aA,Bb,Cc)) in G1 causes
changes in the memory complexity of algorithms. The space complexity of the deep approach remains
unchanged. The space complexity of the lazy approach is increased. This is caused by the change of
the number of pushdown items (|BbnC$|).

5 SPACE COMPLEXITY

The functions describing the maximum bytes in the memory used by the parsing algorithm can be
generalized to:

DA(x) = |IT EMDA|× IT EMS+ |PDDA|+ |AUX |
= 12× IT EMS+28+ |AUX | (3a)

DL(x) = |IT EMDL|× IT EMS+ |PDDL|+ |AUX |
= 12× IT EMS+4+ |AUX | (3b)

LA(x) = |IT EMLA|×LIT EMS+delayed_rules×|bag_item|+ |PDLA|+ |AUX |
= 16×LIT EMS+36×delayed_rules+132+ |AUX | (3c)

LL(x) = |IT EMLL|×LIT EMS+delayed_rules×|bag_item|+ |PDLL|+ |AUX |
= 16×LIT EMS+36×delayed_rules+104+ |AUX | (3d)

where |AUX | means the size of auxiliary memory containing the representation of the input data
and the grammar. |IT EMx| and |PDx| means the size of memory representation of the x pushdown
symbol and the size of the pushdown x, respectively, where x ∈ {DA,DL,LA,LL}. The |bag_item|
means the size of the delay-bag item. IT EMS, and LIT EMS represent the maximum length of the
deep pushdown, and the lazy pushdown, respectively. The delayed_rules is the maximum number of
delayed rules stored in the delay-bag. As we can see in (3a) and (3b), or (3c) and (3d), there are very
small differences in the memory consumption between pushdown implementations. The array item
and the list item of pushdown have the same size. The only difference is the length of the pushdown.

6 CONCLUSION

In this paper, the space complexity of two scattered context grammar parsers were provided. Both
implementations have linear memory complexity. The linear complexity enables us processing of a

0

10

20

30

40

50

60

70

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

m
em

or
y
[1
06
B
]

input [106B]

measured DA2
measured LA2
DA opt2(x)
DA2(x)
LA2(x)

Figure 2: G2 memory consumption

big amount of input data. A small difference between the optimized array implementation and the
list implementation of the pushdown was presented. The dependency of memory consumption on the
SCG grammar was demonstrated.

ACKNOWLEDGEMENT

This work was supported by the research programme MSM 0021630528 and the European Regional
Development Fund in the IT4Innovations Centre of Excellence project (CZ.1.05/1.1.00/02.0070).

REFERENCES

[1] Jirák, O., Kolář, D.: Comparison of Classical and Lazy Approach in SCG Compiler, In: NUMER-
ICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: International Conference
on Numerical Analysis and Applied Mathematics, Halkidiki, GR, AIP, 2011, p. 873-876, ISSN
1551-7616.

[2] Meduna, A.: Automata and Languages: Theory and Applications. Springer-Verlag, London,
2000.

[3] Greibach, S., Hopcroft, J.: Scattered context grammars. J. Comput. Syst. Sci. 3, 233-247(1969).

[4] Kolář, D.: Scattered Context Grammar Parsers, In: Proceedings of the 14th International
Congress of Cybernetics and Systems of WOSC, Wroclaw, PL, PWR WROC, 2008, p. 491–500,
ISBN 978-83-7493-400-8.

[5] Jirák, O., Kolář, D.:Derivation in Scattered Context Grammar via Lazy Function Evaluation, In:
Annual Doctoral Workshop on Mathematical and Engineering Methods in Computer Science
(MEMICS’09), Wadern, DE, DROPS, 2009, p. 10, ISBN 978-3-939897-15-6.

[6] Valgrind project, <http://www.valgrind.org> [cited 2012-03-05].

