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Abstract: This paper discusses formal models for translation which use the principle of synchroniza-
tion. It contains definitions of synchronous grammars based on linked rules instead of nonterminals,
extending the principle from context-free grammars to models with regulated rewriting, such as matrix
grammar and scattered context grammar. The main part presents new results regarding the generative
power of such synchronous grammars.
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1 INTRODUCTION

In modern formal language theory (FLT), there is a number of well-known models that can be used
in formal description of languages. However, there are tasks, such as natural language translation,
where we also want to describe transformations between languages. While we can have separate
formal models for each individual language and another formal mechanism linking them, there are
also models that allow us to describe the translation directly.

There is a generalization of context-free grammar (CFG) called synchronous CFG (see [2]; this
principle is also known as syntax-directed transduction grammar [5] or syntax-directed translation
scheme [1]). Informally, the synchronous CFG is a modification of CFG where every rule has two
right-hand sides. Thus, the synchronous CFG generates a pair of sentences in one derivation, rather
than a single sentence.

In [4], we have proposed synchronization based on linked rules instead of nonterminals, and extended
the principle to models with regulated rewriting, introducing the synronous matrix grammar and the
synchronous scattered context grammar. In this paper, we discuss some theoretical properties of the
proposed models, namely their generative power.

2 PRELIMINARIES

We assume that the reader is familiar with the basic aspects of modern FLT (see [8], [6]). Further
information about matrix grammars and scattered context grammars can be found in [3] and [7],
respectively.

Definition 1 (Context-free grammar). A context-free grammar (CFG) G is a quadruple G = (N,T,
P,S), where N is a finite set of nonterminals, T is a finite set of terminals, N∩T = /0, P⊂N×(N∪T )∗

is a finite set of rules, (u,v) ∈ P is written as u→ v, and S ∈ N is the start symbol.

Definition 2 (Derivation). Let G be a CFG. Let u,v ∈ (N ∪T )∗ and p = A→ x ∈ P. Then, we say
that uAv directly derives uxv according to p in G, written as uAv⇒G uXv [p] or simply uAv⇒ uxv.
We further define⇒+ as the transitive closure and⇒∗ as the transitive and reflexive closure of⇒.



Definition 3 (Generated language). Let G be a CFG. The language generated by G, denoted by L(G),
is defined as L(G) = {w:w ∈ T ∗,S⇒∗ w}

Definition 4 (Matrix grammar). A matrix grammar H is a pair H = (G,M), where G = (N,T,P,S) is
a CFG and M is a finite language over P (M ⊂ P∗) – a sentence of this language is called a matrix.

Definition 5 (Derivation in matrix grammar). Let H = (G,M) be a matrix grammar, G = (N,T,P,S).
Then, for u,v ∈ (N ∪T )∗, m ∈ M we define u⇒ v [m] in H, if there are strings x0, . . . ,xn such that
u = x0, v = xn and x0⇒ x1 [p1]⇒ x2 [p2]⇒ . . .⇒ xn [pn] in G, and m = p1 . . . pn.

Definition 6 (Scattered context grammar). A scattered context grammar (SCG) G is a quadruple
G = (N,T,P,S), where N is a finite set of nonterminals, T is a finite set of terminals, N ∩T = /0, P is
a finite set of rules of the form (A1, . . . ,An)→ (x1, . . . ,xn), where A1, . . . ,An ∈N, x1, . . . ,xn ∈ (N∪T )∗,
and S ∈ N is the start symbol.

Definition 7 (Derivation in SCG). Let G = (N,T,P,S) be an SCG. For u,v ∈ (N ∪ T )∗, p ∈ P we
define u⇒ v [p], if there is a factorization of u = u1A1 . . .unAnun+1, v = u1x1 . . .unxnun+1 such that
p = (A1, . . . ,An)→ (x1, . . . , xn) and ui ∈ (N∪T )∗ for 1≤ i≤ n.

3 SYNCHRONIZATION AND REGULATED REWRITING

This section contains revised definitions from [4]. First, we define rule-based synchronization for
CFGs.

Definition 8 (Rule-synchronized CFG). A rule-synchronized CFG (RSCFG) H is a 5-tuple H =
(GI,GO,Ψ,ϕI,ϕO), where GI = (NI,TI,PI,SI) and GO = (NO,TO,PO,SO) are CFGs, Ψ is a set of
rule labels, and ϕI is a function from Ψ to PI and ϕO is a function from Ψ to PO.

We use the following notation (presented for input grammar GI , analogous for output grammar GO):

p : AI → xI ϕI(p) = AI → xI

where p ∈Ψ,AI → xI ∈ PI

xI ⇒GI yI [p] derivation step in GI

where xI,yI ∈ (N∪T )∗, p ∈Ψ applying rule ϕI(p)
xI ⇒n

GI
yI [p1 . . . pn] derivation in GI applying

where xI,yI ∈ (N∪T )∗, pi ∈Ψ for 1≤ i≤ n rules ϕI(p1) . . .ϕI(pn)

Definition 9 (Translation in RSCFG). Let H = (GI,GO,Ψ,ϕI,ϕO) be a RSCFG. Translation T (H)
is the set of pairs of sentences, which is defined as T (H) = {(wI,wO):wI ∈ T ∗I ,wO ∈ T ∗O ,SI ⇒∗GI

wI [α],SO⇒∗GO
wO [α],α ∈Ψ∗}.

In [4], we considered RSCFG only as a special case of synchronous CFG. However, there is actually
a significant difference. While the latter does not bring any increase in generative power over CFG,
RSCFG does, as we will see in the next section.

To define synchronization for SCGs, we simply replace context-free rules with scattered context rules.

Definition 10 (Synchronous SCG). A synchronous SCG (SSCG) H is a 5-tuple H = (GI,GO,Ψ,
ϕI,ϕO), where GI = (NI,TI,PI,SI) and GO = (NO,TO,PO,SO) are SCGs, Ψ is a set of rule labels, and
ϕI is a function from Ψ to PI and ϕO is a function from Ψ to PO.

Definition 11 (Translation in SSCG). Let H = (GI,GO,Ψ,ϕI,ϕO) be a SSCG. Translation T (H)
is the set of pairs of sentences, which is defined as T (H) = {(wI,wO):wI ∈ T ∗I ,wO ∈ T ∗O ,SI ⇒∗GI

wI [α],SO⇒∗GO
wO [α],α ∈Ψ∗}.



In the case of matrix grammars, we link whole matrices, rather than individual rules.

Definition 12 (Synchronous matrix grammar). A synchronous matrix grammar (SMAT) H is a 7-tuple
H = (GI,MI,GO,MO,Ψ,ϕI,ϕO), where (GI,MI) and (GO,MO) are matrix grammars, Ψ is a set of
matrix labels, and ϕI is a function from Ψ to MI and ϕO is a function from Ψ to MO.

Definition 13 (Translation in SMAT). Let H = (GI,MI,GO, MO,Ψ,ϕI,ϕO) be a SMAT. Transla-
tion T (H) is the set of pairs of sentences, which is defined as T (H) = {(wI,wO):wI ∈ T ∗I ,wO ∈
T ∗O ,SI ⇒∗(GI ,MI)

wI [α],SO⇒∗(GO,MO)
wO [α],α ∈Ψ∗}.

4 GENERATIVE POWER OF SYNCHRONOUS GRAMMARS

Synchronous grammars generate pairs of sentences. To be able to compare their generative power
with well-known models such as CFGs, we can consider their input or output language.

Definition 14 (Input and output language). Let H be a synchronous grammar. Then, the input lan-
guage and the output language of H, denoted by, respectively, LI(H) and LO(H), are defined as
follows: LI(H) = {wI ∈ T ∗I :∃wO:(wI,wO) ∈ T (H)}, LO(H) = {wO ∈ T ∗O :∃wI:(wI,wO) ∈ T (H)}.

Example 1. Consider a RSCFG H = (GI,GO,Ψ,ϕI,ϕO) with the following rules (GI on the left, GO

on the right, nonterminals are in capitals, linked rules share the same label):

1: SI → ABC 1: SO → A
2: A → aA 2: A → B
3: B → bB 3: B → C
4: C → cC 4: C → A
5: A → ε 5: A → B′

6: B → ε 6: B′ → C′

7: C → ε 7: C′ → ε

Derivation example:

SI ⇒ ABC [1] SO ⇒ A [1]
⇒ aABC [2] ⇒ B [2]
⇒ aAbBC [3] ⇒ C [3]
⇒ aAbBcC [4] ⇒ A [4]
⇒ aaAbBcC [2] ⇒ B [2]
⇒ aaAbbBcC [3] ⇒ C [3]
⇒ aaAbbBccC [4] ⇒ A [4]
⇒ aabbBccC [5] ⇒ B′ [5]
⇒ aabbccC [6] ⇒ C′ [6]
⇒ aabbcc [7] ⇒ ε [7]

We can easily see that LI(H) = {anbncn:n ≥ 0}, which is well known not to be a context-free lan-
guage. This shows that RSCFG is stronger than (synchronous) CFG (strictly speaking, to make this
claim, we also have to show that every context-free language can be generated by a RSCFG, but that
is evident from the definition). Where exactly do synchronous grammars (rule-synchronized) stand
in terms of generative power?

Let L (RSCFG), L (SMAT ), and L (SSCG) denote the class of languages generated by RSCFGs,
SMATs, and SSCGs, respectively, as their input language (note that the results presented below would
be the same if we considered the output language instead).

Theorem 1. L (RSCFG) = L (MAT )



Proof. First, we prove that L (RSCFG) ⊆ L (MAT ). For every RSCFG H = (GI,GO,Ψ,ϕI,ϕO),
where GI = (NI,TI,PI,SI), GO = (NO,TO,PO,SO), we can construct a matrix grammar H ′ = (G,M),
where G = (N,T,P,S), such that L(H ′) = LI(H), as follows. Without loss of generality, assume
NI∩NO = /0, S /∈NI∪NO. Set N =NI∪NO∪{S}, T = TI , P= {S→ SISO}, M = {S→ SISO}. For every
label p ∈Ψ, add rules pI , pO to P, add matrix pI pO to M, where pI = ϕI(p) and pO = A0→ A1 . . .An

such that ϕO(p) = A0 → x0A1x1 . . .Anxn, where Ai ∈ NO, xi ∈ T ∗O for 0 ≤ i ≤ n (this removes all
terminals from the right-hand side of the rule).

H ′ simulates the principle of linked rules in H by matrices. That is, for every pair of rules (pI, pO)
such that pI = ϕI(p), pO = ϕO(p) for some p ∈ Ψ in H, there is a matrix m = pI p′O in H ′, where
p′O is equal to pO with all terminals removed (formally defined above). If, in H, xI ⇒ yI [p] in GI

and xO ⇒ yO [p] in GO, then there is a derivation step xIx′O ⇒ yIy′O [m] in H ′, where x′O and y′O are
equal to xO and yO with all terminals removed, respectively. Note that since the rules are context-
free, the presence (or absence) of terminals in a sentential form does not affect which rules we can
apply. Furthermore, because the nonterminal sets NI and NO are disjoint, the first rule in each matrix,
simulating the derivation step in GI , and the second rule, simulating the derivation step in GO, always
rewrite distinct parts of the current sentential form.

Now we have to show that L (MAT ) ⊆L (RSCFG) holds. For every matrix grammar H = (G,M),
where G=(N,T,P,S), we can construct a RSCFG H ′=(GI,GO,Ψ,ϕI,ϕO), where GI =(NI,TI,PI,SI),
GO = (NO,TO,PO,SO), such that LI(H ′) = L(H), as follows. Without loss of generality, assume
N ∩{SI,SO,X} = /0. Set NI = N ∪{SI,X}, TI = T , PI = {SI → SX ,X → ε}, NO = {SO,X}, TO = /0,
PO = {SO → X ,X → ε}. Set Ψ = {0,1}, ϕI = /0, ϕO = /0, ϕI(0) = SI → SX , ϕO(0) = SO → X ,
ϕI(1) = X → ε, ϕO(1) = X → ε. For every matrix m = p ∈M, add rule p to PI , X → X to PO, add la-
bel m to Ψ, and set ϕI(m) = p, ϕO(m) =X→X . For every matrix m= p1 . . . pn ∈M, where n> 1, add
rules p1, . . . , pn to PI , add nonterminals X1

m, . . . ,X
n−1
m to NO, add rules X→ X1

m,X
1
m→ X2

m, . . . ,X
n−2
m →

Xn−1
m ,Xn−1

m → X to PO, add labels m1, . . . ,mn to Ψ, and set ϕI(m1) = p1, ϕO(m1) = X→ X1
m, ϕI(mi) =

pi, ϕO(mi) = X i−1
m → X i

m for 1 < i < n, and ϕI(mn) = pn, ϕO(mn) = Xn−1
m → X .

H ′ simulates matrices in H by derivation in GO. That is, if x⇒ y [m] in H, where m = p1 . . . pn, then
there is a sequence of derivation steps X⇒X1

m [m1]⇒X2
m [m2]⇒ . . .⇒Xn−2

m [mn−2]⇒Xn−1
m [mn−1]⇒

X [mn] in GO and ϕI(mi) = pi for 1 ≤ i ≤ n. Now observe that in GO constructed by the above
algorithm, every nonterminal except X can only appear as the left-hand side of at most one rule. This
means that after rewriting X to X1

m, the only way for the derivation to proceed is the above sequence,
and the entire matrix is simulated.

Note that GO constructed by the above algorithm is not only context-free, but also regular.

Theorem 2. L (SMAT ) = L (MAT )

Proof. The inclusion L (MAT ) ⊆L (SMAT ) follows from definition. It only remains to prove that
L (SMAT )⊆L (MAT ). For every SMAT H =(GI,MI,GO,MO,Ψ,ϕI,ϕO), where GI =(NI,TI,PI,SI),
GO = (NO,TO,PO,SO), we can construct a matrix grammar H ′ = (G,M), where G = (N,T,P,S),
such that L(H ′) = LI(H), as follows. Without loss of generality, assume NI ∩NO = /0, S /∈ NI ∪NO.
Set N = NI ∪NO ∪ {S}, T = TI , P = {S→ SISO}, M = {S→ SISO}. For every label p ∈ Ψ, add
rules p1

I , . . . , pn
I , p1

O, . . . , pm
O to P, add matrix p1

I . . . pn
I p1

O . . . pm
O to M, where p1

I . . . pn
I = ϕI(p) and for

1≤ j ≤ m, p j
O = A j

0→ A j
1 . . .A

j
n such that ϕO(p)[ j] = A j

0→ x j
0A j

1x j
1 . . .A

j
nx j

n, where A j
i ∈ NO, x j

i ∈ T ∗O
for 0≤ i≤ n (again, this removes all terminals from the right-hand side of the rules; m[i] denotes the
i-th rule in matrix m).

H ′ simulates H by combining the rules of each two linked matrices in H into a single matrix in H ′.
That is, for every pair of matrices (mI,mO) such that mI = ϕI(p),mO = ϕO(p) for some p ∈ Ψ in
H, there is a matrix m = mIm′O in H ′, where m′O is equal to mO with all terminals removed (formally



defined above). If, in H, xI⇒ yI [p] in GI and xO⇒ yO [p] in GO, then there is a derivation step xIx′O⇒
yIy′O [m] in H ′, where x′O and y′O are equal to xO and yO with all terminals removed, respectively. Note
that since the rules are context-free, the presence (or absence) of terminals in a sentential form does
not affect which rules we can apply. Furthermore, because the nonterminal sets NI and NO are disjoint,
the first part of each matrix, simulating the derivation step in GI , and the second part, simulating the
derivation step in GO, always rewrite distinct parts of the current sentential form.

Theorem 3. L (SSCG) = RE

Proof. Clearly, L (SSCG) ⊆ RE holds. From definition, it follows that L (SCG) ⊆L (SSCG). Be-
cause L (SCG) = RE, RE ⊆L (SSCG) must also hold.

5 CONCLUSION

In this paper, we have discussed the generative power of synchronous grammars based on linked rules.
To summarize the main results, we have obtained the following hierarchy of language classes:

CF ⊂L (RSCFG) = L (MAT ) = L (SMAT )⊂L (SSCG) = RE

Further research prospects in this direction include study of the properties of synchronous grammars
with additional restrictions, such as leftmost derivation. We can also consider synchronization of
other well-known formal models, using the same principle.
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