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Abstract: From a pragmatic point of view, an investigation of various type of restrictions, placed
on derivation in grammars, plays a significant role in the formal language theory. The main reason
is a possibility to select nonterminals intended to rewrite with a lower level of nondeterminism. This
paper introduces generalized version of n-generating grammar system and corresponding n-accepting
move-restricted automata system. On the n-generating grammar system, it shows how two variants
of derivation-restrictions effect its generative power.
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1 INTRODUCTION

The formal language theory has investigated various type of left restrictions in grammars working
in a context-free way. The motivation for this investigation comes from pragmatical usage of gram-
mars, where selection of rewriting nonterminals with a lower level of nondeterminism are needed.
In ordinary context-free grammars, these restrictions usually have no effect on the generative power.
However, in terms of regulated context-free grammars, the left derivation restrictions have an effect
on their generative power (see [1, 2]).

The authors of [6] studied general and canonical multi-generative grammar systems, where the main
difference between them is leftmost restriction during generating placed on derivations in all gram-
mars used in the system. In [6] it has been proven that each component in the systems can generate RE
languages when all the components works in the leftmost way even if the system contains only two
context-free grammars. As a corollary we can say, that two context-free grammars making leftmost
derivation is enough to give RE languages from each components. It does not matter if the restriction
is placed on the other components or not. In [5] it has been proven, that general multi-generative
systems have only the same generative power as a matrix grammars with epsilon rules. In this paper,
effect of differently restricted context-free components in n-generative grammar systems are studied.

2 PRELIMINARIES

In this paper, we assume the reader is familiar with the formal language theory (see [7]).

For a set, Q, |Q| denotes the cardinality of Q. For an alphabet, V , V ∗ represents the free monoid
generated by V (under the operation concatenation). The identity of V ∗ is denoted by ε. Set V+ =
V ∗−{ε}; algebraically, V+ is thus the free semigroup generated by V . For every string w ∈ V ∗, |w|
denotes the length of w and wR denotes the mirror image of w.

A finite automaton, FA, is a five-tuple M = (Q,Σ,δ,q0,F), where Q is a finite set of states, Σ is an
alphabet, q0 ∈ Q is the initial state, δ is a finite set of transition rules of the form qa→ p, where
p,q ∈ Q, a ∈ Σ∪{ε}, F ⊆ Q is a set of final states. A configuration of M is any string from QΣ∗.



For any configuration qay, where a ∈ Σ, y ∈ Σ∗, q ∈ Q and any qa→ p ∈ δ, M makes a move from
configuration qay to configuration py according to qa→ p, written as qay⇒ py [qa→ p], or simply
qay⇒ py. ⇒ ∗ and ⇒ + represent transitive-reflexive and transitive closure of ⇒ , respectively. If
w ∈ Σ∗ and q0w⇒∗ f , where f ∈ F , then w is accepted by M and q0w⇒∗ f is an acceptance of w in
M. The language of M is defined as L(M) = {w ∈ Σ∗: q0w⇒∗ f is an acceptance of w}.

A pushdown automaton, PDA, is a septuple M = (Q,Σ,Γ,δ,q0,Z0, /0), where Q is a finite set of states,
Σ is an alphabet, q0 ∈Q is the initial state, Γ is a pushdown alphabet, δ is a finite set of transition rules
of the form Zqa→ γp, where p,q ∈ Q, Z ∈ Γ, a ∈ Σ∪{ε}, γ ∈ Γ∗ and Z0 ∈ Γ is the initial pushdown
symbol. A configuration of M is any string from Γ∗QΣ∗. For any configuration xAqay, where x ∈ Γ∗,
y ∈ Σ∗, q ∈ Q and any Aqa→ γp ∈ δ, M makes a move from configuration xAqay to configuration
xγpy according to Aqa→ γp, written as xAqay⇒ xγpy [Aqa→ γp], or simply xAqay⇒ xγpy. ⇒
∗ and ⇒ + represent transitive-reflexive and transitive closure of ⇒ , respectively. If w ∈ Σ∗ and
Z0q0w⇒∗ f , where f ∈Q, then w is accepted by M and Z0q0w⇒∗ f is an acceptance of w in M. The
language of M is defined as L(M) = {w ∈ Σ∗: Z0q0w⇒∗ f is an acceptance of w}.

A 1-turn PDA is a PDA in which the length of the pushdown tape alternatively increases and decreases
at most one times during any sweep of the automation.

A state-less PDA, SPDA, is a PDA with exactely one state.

A Turing machine, TM, is a finite automaton with infinite tape containing an input string followed by
infinite sequence of blank-symbols. The machine has a read-write head which is scanning a single
cell on the tape. This read-write head, with respect of rules of the machine, can move left and right
along the tape to scan and rewrite successive cells. The string written at the beginning on the input
tape is accepted, if the machine moves to finial state.

A linear bounded automaton, LBA, is a TM with limited size of tape by the length of its input string.

A context-free grammar, CFG, is quadruple G = (N,T,S,P), where N and T are disjoint alphabets of
nonterminal and terminal symbols, respectively, S ∈ N is the start symbol of G, and P is finite set of
grammar rules of the form A→ α, where A ∈ N and α ∈ (N ∪T )∗. Let u,v ∈ (N ∪T )∗, for all r:A→
α ∈ P, we write uAv⇒ uαv[r], or simply uAv⇒ uαv. Let ⇒∗ and ⇒+ denote transitive-reflexive
and transitive closure of⇒. The language of G is defined as L(G) = {ω: S⇒∗ ω,ω ∈ T ∗}. CFG is
linear, LNG, and right-linear, RLNG, if all its rules are of the form A→ α with α ∈ (T ∗NT ∗)∪T ∗

and α ∈ T N∪T ∪{ε}, respectively.

A valence context-free grammar, VAL, is quadruple G= (N,T,S,P), where N, T , and S are defined as
in CFG, P is finite set of grammar rules of the form A→α(n1, . . . ,nk), where A∈N and α∈ (N∪T )∗,
(n1, . . . ,nk) ∈ Zk. At the beginning of the generation the grammar has valence-vector v ∈ Nk

0 set to
(0, . . . ,0). Let u,v ∈ (N∪T )∗, for all r:A→ α(n1, . . . ,nk) ∈ P. Then, uAv⇒ uαv[r], or simply uAv⇒
uαv, and (n1, . . . ,nk) is added to v. Let⇒∗ and⇒+ denote transitive-reflexive and transitive closure
of⇒. The language of G is defined as L(G) = {ω: S⇒∗ ω,ω∈ T ∗ and valence vector v= (0, . . . ,0)}.

3 HYBRID CANONICAL RULE–SYNCHRONIZED N-GENERATIVE GRAMMAR SYSTEM

A hybrid canonical rule-synchronized multigenerative grammar system consists of n generative com-
ponents (grammars) and a control set of n-tuples of rules. Each grammar generates its own string in
the leftmost way, while the control set determines which grammar rules can be used at the same
computation step in all components. In this paper we consider combination of right-linear, lin-
ear, and context-free grammars. Formally, the hybrid canonical rule–synchronized multigenera-
tive grammar system, HCGR(t1,...,tn), is an n+1-tuple Γ = (G1, . . . ,Gn,Q), where Gi = (Ni,Ti,Pi,Si)
is a right-linear, linear, or context-free grammar for every i = 1, . . . ,n, and Q is a finite set of n-
tuples of the form (r1, . . . ,rn), where ri ∈ Pi for every i = 1, . . . ,n. Furthermore, for all i = 1, . . . ,n,



ti ∈ {RLNG, LNG, CFG} denotes type of ith component.

A sentential n-form of HCGR(t1,...,tn) is an n-tuple χ = (x1, . . . ,xn), where xi ∈ (Ni ∪Ti)
∗ for all i =

1, . . . ,n. Consider two sentential n-forms, χ = (u1A1v1, . . . , unAnvn) and χ′ = (u1x1v1, . . . ,unxnvn)
with Ai ∈ Ni, ui ∈ T ∗, vi,xi ∈ (N ∪ T )∗, ri:Ai → xi ∈ Pi for all i = 1, . . . ,n, and (r1, . . . ,rn) ∈ Q.
Then, χ⇒ χ′, and ⇒∗ and ⇒+ are its transitive-reflexive and transitive closure, respectively. The
n-language of Γ is defined as n-L(Γ) = {(w1, . . . ,wn): (S1, . . . ,Sn)⇒∗ (w1, . . . ,wn),wi ∈ T ∗i for all
i = 1, . . . ,n}.

4 HYBRID N-ACCEPTING RESTRICTED AUTOMATA SYSTEMS

Formaly, a hybrid n-accepting move-restricted automata system, denoted HMAS(t1,...,tn), is defined
as an n+ 1-tuple ϑ = (M1 . . . ,Mn,Ψ) with Mi as a finite or (1-turn) pushdown automaton for all
i = 1, . . . ,n, and with Ψ as a finite set of n-tuples of the form (r1, . . . ,rn), where for every j = 1, . . . ,n,
r j ∈ δ j in M j. Furthermore, for all i = 1, . . . ,n, ti ∈ {FA, 1-turn PDA, PDA} indicates the type of ith
automaton.

An n-configuration is defined as an n-tuple χ= (x1, . . . ,xn), where for all i= 1, . . . ,n, xi is a configura-
tion of Mi. Let χ= (x1, . . . ,xn) and χ′= (x′1, . . . ,x

′
n) be two n-configurations, where for all i= 1, . . . ,n,

xi⇒ x′i [ri] in Mi, and (r1, . . . ,rn) ∈Ψ, then ϑ moves from n-configuration χ to n-configuration χ′, de-
noted χ⇒ χ′, and in the standard way, ⇒ ∗ and ⇒ + denote the transitive-reflexive and the transitive
closure of ⇒ , respectively.

Let χ0 =(x1ω1, . . . ,xnωn) be the start and χ f =(q1, . . . , qn) be a final n-configuration of HMAS(t1...,tn),
where for all i = 1, . . . ,n, ωi is the input string of Mi and qi is state of Mi. The n-language of
HMAS(t1,...,tn) is defined as n-L(ϑ) = {(ω1, . . . ,ωn): χ0⇒ ∗χ f and for every i= 1, . . . ,n, Mi accepts}.

In a special case where all components are of type X , we write nX instead of (X , . . . ,X). For example,
a hybrid n-accepting move-restricted automata system, where all components are PDAs, is denoted
by HMASnPDA.

5 PROPERTIES OF N-LANGUAGES GIVEN BY RESTRICTED N-SYSTEMS

First of all we placed the leftmost restriction on derivations in the first component. Derivations of the
others are not restricted.

Theorem 1. Let L (HCGR(CFGlm,CFG))1 is the family of languages generated by the first component
working in the leftmost way in HCGR(CFGlm,CFG) and L (VALlm,CF) is the family of leftmost valence
context-free grammar. Then, L (HCGR(CFGlm,CFG))1 = L (VALlm,CF).

Proof of Theorem 1. The first inclusion—that is, L (HCGR(CFGlm,CFG))1 ⊆L (VALlm,CF), directly
follows from the fact that any time we can construct valance context-free grammar V for any Γ ∈
HCGR(CFGlm,CFG) such that Llm(Γ)1 = Llm(V ), where V assigns one dimension of Zk and simulates
computation in G1. By valence-vector V remembers the numbers of occurrences of each nonterminal
in G2.

On the other hand, for any valence context-free grammar V = (Nv,Tv,Sv,Pv), working in the leftmost
way, we can construct HCGR(CFGlm,CFG)

Γ = (G1,G2,Q). Grammars G1 = (N1,T1,S1,P1) and G2 =
(N2,T2,S2,P2) are constructed as it follows. Set N1 = Nv, T1 = Tv, P1 = {S1 → Sv∆,∆→ ε}, N2 =
{S2,A1,A2, . . .Ak}, where nonterminals A1, . . . ,Ak represents components of valence vectors; T2 =
{•}; set P2 = {S2 → S2,A1 → ε,A2 → ε, . . . ,Ak → ε,S2 → ε}; for each rule A→ x(n1, . . . ,nk) ∈ Pv

add r1:A→ A(1), r2:A(1) → A(2),. . ., rn−1:A(n−1) → A(n), rn:A(n) → x, where n = Σ
max(0,−ni)
i=1 (n = 0

implies that just A→ x is added), into P1, add r:S2→ x̂ = A1 . . .A1A2 . . .A2 . . .Ak . . .AkS2, where Ais



are in x̂ max(0,ni)-times, for all i = 1, . . . ,k, into P2, add pairs of the form (ri,A j → ε) and (ri,r)
into Ψ in that way, where A j → ε have to be used exactly max(0,−n j)-times, for j = 1, . . . ,k, and
(ri,r) once during A ⇒ A(1) ⇒ . . . ⇒ A(n) ⇒ x derivation sequence in G1; add (S1 → Sv∆,S2 →
S2) and (∆→ ε,S2→ ε) into Ψ.

G1, in the constructed grammar system, step by step simulates derivation in V . Because of Ψ, when-
ever V makes a derivation by a rule A→ x(n1, . . . ,nk), G2 removes −ni Ais for all i = 1, . . . ,k where
ni < 0 and adds n j A js for all j = 1, . . . ,k where n j > 0. As the last step of computation, G1 and G2
removes ∆ and S2, respectively. Formal prove that L(Γ)1 = L(V ) is left to the reader.

In [3] has been demonstrated that leftmost valence context-free grammar is equivalent to nondeter-
ministic valence pushdown automata. Although we do not know where exactly their class lies, it is
probable that these models cannot describe all languages from RE.

Besides the leftmost restriction, we restrict number of nonterminals in each sentential form of G1, . . . ,
Gn to one—that is, components of HCGR are linear grammars. The motivation ensues from the
following theorem.

Theorem 2. Let L j(HMAS(t1,...,tn)) = {L j: L j = {w j: (w1, . . . ,wn)∈K} and K ∈L (HMAS(t1,...,tn))},
where HMAS(t1,...,tn) contains two 1-turn PDAs and n−2 FAs. Then, L j(HMAS(t1,...,tn)) = RE.

Proof of Lemma 2. Every recursively enumerable language can be generated by a grammar G in Gef-
fert normal form (see [4]), i.e. by a grammar G = ({A,B,C,D,S},T,S,P) where P contains rules
only of the form S→ uSa, S→ uSv, S→ uv, AB→ ε, and CD→ ε, where u ∈ {A,C}∗, v ∈ {B,D}∗,
a ∈ T . In addition, every sentential form of any successful derivation have to be of the form S ⇒
∗w1w2w where w1w2 ∈ {A,C}∗{B,D}∗, w ∈ T ∗, and w1w2w⇒ ∗w.

Let G1, . . . ,Gn be n grammars in the Geffert normal form and let ϑ = (M1,M2, . . . , Mn,Ψ) be an
HMAS(t1,...,tn), M1,M2 be two 1-turn PDAs and M3, . . . ,Mn be FAs. M1 and M2 can generate strings

over {A,C, |} and {B,D, |} ∪ {a: a ∈
n⋃

i=1
Σi} on the M1’s and M2’s pushdown, respectively, in the

following way. The PDAs start with symbol | on their pushdowns. First, ϑ simulates derivations in
G1, . . . ,Gn. The system starts with G1. If Gi applies a rule of the form Si→ uSiw, ϑ adds revu and
w on M1’s and M2’s pushdown, respectively. If Gi make a derivation step by rule of the form Si →
uw, then ϑ adds rev(u)| and w| on M1’s and M2’s pushdown, respectively, and the system starts with
simulation of Gi+1. After the generation, PDAs start to compare topmost symbols on their pushdowns.
At the same computation step, the automata can remove A with B and C with D. Whenever the | is on
the M1’s pushdown top and ϑ works on ith input string (the system starts with nth input string), M2
compares symbols on its pushdown with input symbols which reads ith automaton. If these symbols
coincide, M2 removes the symbol from the pushdown. As | is topmost pushdown symbol of both
PDAs, the PDAs remove the symbol and start with (i−1)th input string. Clearly, automata in ϑ read
their input only if they compare the input with content of M2’s pushdown. If all automata read all
their input and the PDAs have empty pushdown, all strings are accepted—that is, ϑ accepts the input
n-string.

In this way, ϑ can simulate derivations of n grammars in Geffert normal form, which generates the
whole family of RE languages. Therefore, Lemma 2 holds.

In spite of the fact that for any language L accepted by 1-turn automata, a linear grammar generating
L can be construct, Theorem 3 holds.

Theorem 3. L (HCGRnLNG)(L (HMAS(t1,...,tn)), where HMAS(t1,...,tn) has exactly two 1-turn PDAs
and n−2 FAs.



Proof of Theorem 3. Consider HCGRnLNG
Γ̂ = (Ĝ1, . . . , Ĝn, Q̂), which generates n-language n-L(Γ̂)

= {(w,ε, . . . ,ε): w∈ T̂1
∗

and (S1, . . . ,Sn)⇒ ∗(w,ε, . . . ,ε)}. Since G1, . . . ,Gn are linear, any successful
derivation can be expressed as (Ŝ1, . . . , Ŝn) ⇒ ∗(uA1v,A2, . . . , An) ⇒ (axv,ε, . . . ,ε), where axv ∈
T̂1
∗
. The longest sentential n-form is m+ n, where m = |axv|. Hence, we can construct a linear

bounded automaton M with states of the form (A1, . . . ,An), where Ai ∈ N̂i ∪{ε} and input alphabet
Γ = T1 ∪{a: a ∈ T1}. M starts with state (Ŝ1, . . . , Ŝn) and w on its input tape. During computation,
it underlines symbols on the input tape by the following algorithm. Without any loss of generality,
suppose that M is in state (A1, . . . ,An). If there are n rules, r1, . . . ,rn, where r1 is rule of the form A→
uB1v, for i = 2, . . . ,n, ri is of the form Ai → Bi and (r1, . . . ,rn) ∈ Q, such that u is equal to the first
|u| not-underlined symbols on the tape and v is equal to the last |v| not-underlined symbols on the
tape, M underlines these symbols and moves to the state (B1, . . . ,Bn). As soon as all symbols on the
tape are underlined and the automaton is in the state (ε, . . . ,ε), the input is accepted. Hence, L j =

{w: (w,ε, . . . ,ε) ∈ n-L(Γ̂)} belongs to the family of CS languages. Therefore, Theorem 3 holds.

6 CONCLUSION

This paper continued [5] and demonstrated that generative power of the leftmost-restricted compo-
nent in a n-generating grammar system with exactly one component working in the leftmost way,
lies somewhere between generative power of matrix grammars and accepting power of Turing ma-
chines. The generative power of unrestricted grammars in such systems remains unsolved and it is
suggested for a further research. On the other hand, the present paper showed that despite the ability
of n-accepting automata system, based upon 1-turn PDAs, to accept all RE languages, in case of n-
generating grammar system containing linear grammars, the generative power of its components lies
under the accepting power of LBAs.
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