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Abstract: 1 am developing a console application in Python for detecting honeypots in network. I
am using two techniques (a TCP/IP fingerprinting and a clock skew estimation). I present simplified
description of those techniques, of their core functionality in the application and some results of initial
experiments.
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INTRODUCTION

Being able to detect honeypots is important to malicious users as well as security professionals.
Attackers want keep their techniques secret. If an attacker was to perform a zero day attack on a
honeypot, it is likely to become public knowledge a lot faster and as a result, value of attackers
advantage will be reduced if not expunged. When an attacker recognizes a honeypot, it becomes
useless.

Work presented in this paper concentrates on network level detection of virtual honeypots and virtual
honeynets. Virtual machines are quite common as honeypots. Physical honeypots are usually unde-
tectable on network level and most of them can be detected only on system level with access to a
system.

I am developing a console application in Python for detecting honeypots in network. I am using two
techniques (a TCP/IP fingerprinting and a clock skew estimation), which are described in following
chapters.

TCP/IP FINGERPRINTING

This technique is based on work from [4]. In principle, it is about extracting various quantitative and
qualitative data from each TCP/IP connection with a tested machine and using them to classify the
machine as a honeypot or a benign system.

Figure 1 shows a simplified core functionality of the application for this technique. The application
makes a traffic with a tested machine with help of nmap and records it with t cpdump. Then it
extracts data needed for a classification from recorded packet trace and process them. A result of a
data processing is a 51-dimensional normalized vector. Finally, the application classifies the vector
with a Support Vector Machine (SVM) using 1ibsvm [1].

I managed to get 440 data samples for a local network. A data set contains both benign systems (100
items) and honeypots (340 items). The data set was randomly divided to a set of 150 training data
and a set of 290 testing data. Table 1 summarizes performance of classification with the SVM for a
testing data set. According to statistics, the application performs well in detecting honeypots, but not
so well in identifying regular systems. This is probably due to only 22.7% of benign systems in the
data set.
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Figure 1: TCP/IP fingerprinting simplified

statistic: (%)
sensitivity (honeypots correctly classified as honeypots): 100.0
specificity (benign systems correctly classified as benign systems): | 39.66
precision (classified as honeypots correctly): 86.84
negative predictive value (classified as regular systems correctly): 100.0
accuracy (overall accuracy): 87.89

Table 1: Statistics for TCP/IP fingerprinting classification with SVM

3 CLOCK SKEW ESTIMATION

This method is based on findings from [2]. It can be used, to determine, whether a set of IP addresses
correspond to virtual hosts, e.g., as part of a virtual honeynet. It exploits microscopic deviations
in device hardware: clock skews. I am using a TCP timestamps-based fingerprinting technique. A
measurer can be any device capable of observing TCP packets from a tested device, assuming that
those packets have a TCP timestamps option enabled. When the measurer has obtained a trace of
TCP packets from the device, he can estimate a TCP timestamps option clock (TSopt clock) skew. By
comparing estimated TSopt clock skews of tested devices, one can determine, if it is virtual honeynet
or regular network.

In my experiments, I am using an active approach. That is, the application initiates a TCP flow with
the device, assuming that the device is reachable and has an open port. But this technique should
work with a passive approach as well. That is, when the measurer passively intercepts packets from
the device. Whether they are destined to him, or he is only somewhere in the middle.

A simplified active approach, that I used in my experiments with the application, is in figure 2. Firstly,
the application finds opened TCP port(s) with nmap. Secondly, it starts capturing TCP packets from
the device with t cpdump and opening and closing TCP connections on found port(s). This is done
in random intervals of specified length (e.g., 0-120 seconds). After a specified time, the application
stops connecting and capturing TCP packets. Then it extracts time when the measurer received a
packet and a TCP timestamp option TSval for each packet. Finally, it tries to estimate the clock skew
for the device. A clock skew estimation uses a linear programming solution from [2] using PuLP [3].
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Figure 2: Clock skew estimation simplified

In most of my experiments, I used a PC with 3.3GHz Intel Core i5-2500K CPU, openSUSE 11.4
OS and ntpd enabled. For honeynet installation, I used a notebook with 2.10GHz Intel Core 2 Duo
T8100 CPU. On this notebook, openSUSE 11.4 had nt pd enabled. Data for some experiments, that I
did, are in table 2. A first group is for openSUSE 11.4 as a host operating system and 3 guest operating



systems installed on the host using a Virtualbox. Maximum difference between estimated clock skews
was 305 nanoseconds. In a second group is Windows 7 Professional as a host operating system and
3 guest operating systems under a VMware Player. Maximum difference between estimated clock
skews for a second group was 310 nanoseconds. Maximum differences for both groups was too
small, to be from different physical devices. It is highly improbable, that a group of physical devices
would correlate so nicely. Those experiments suggest, that if the measurer is able to capture packets
from the measured device (with above premises) for long enough period of time, he can successfully
differentiate a virtual honeynet from a regular network using this application. The application also
supports ICMP-based technique [2] for clock skew estimation.

Operating system Hardware | TSopt clock [Hz] | Skew est. [ns]
openSUSE 11.4 (Linux kernel 3.2.7-10) | real 1000 -65.1
Debian 6.0.4 (Linux kernel 2.6.32-5) VirtualBox 250 -132.4
Mint 12 (Linux kernel 3.0.0-12) VirtualBox 250 -168.7
Windows XP Professional SP3 VirtualBox 10 136.2
Windows 7 Professional real 100 -10029.2
Debian 6.0.4 (Linux kernel 2.6.32-5) VMware 250 -10016.7
Debian 6.0.4 (Linux kernel 2.6.32-5) VMware 250 -10014.0
Windows XP Professional SP3 VMware 10 -10323.6

Table 2: TCP timestamps option clock skew estimations for openSUSE 11.4 with VirtualBox and
Windows 7 Professional with VMware Player as virtual honeynets.

4 CONCLUSION

Both techniques performed well in the application. But there must be done more testing. Especially
for the TCP/IP fingerprinting. It should be tested in the Internet environment as well. In future work,
I will add functionality for a service exercising technique, for detecting low-interaction honeypots.
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