
SCATTERED CONTEXT GRAMMARS GENERATING
DERIVATION TREES

Stanislav Židek
Doctoral Degree Programme (2), FIT BUT

E-mail: xzidek05@stud.fit.vutbr.cz

Supervised by: Alexander Meduna
E-mail: meduna@fit.vutbr.cz

Abstract: Propagating scattered context grammars are used to generate the strings corresponding to
the derivation trees. It is proved that for every language defined by scattered context grammar, there
exists a propagating scattered context grammar whose language consists of the strings representing
derivation trees of the original language.

Keywords: propagating scattered context grammar, derivation tree, left-bracketted representation

1 INTRODUCTION

Scattered context grammars are one of the most intuitive yet very powerful types of paralell grammars.
They deserve our attention for example as a suitable model of parallel compilation, which is being
intensively studied last years (see [1]).

In this paper, we use their propagating version, which contains no erasing productions, to generate the
strings representing the derivation trees of languages characterized by scattered context grammars.
We demonstrate that for every scattered context grammar G, there exists a propagating scattered
context grammar that generates the strings representing the derivation trees of L(G) according to the
grammar G. This characterization is of some interest, because the family of languages generated by
propagating scattered context grammars is properly included in the family of languages generated by
scattered context grammars.

In Section 2, we state the preliminaries and define the key notions of our article. In Section 3, we
present our result, i.e. the algorithm taking the scattered context grammar and constructing the prop-
agating scattered context grammar that generates the strings corresponding to derivation trees. Fur-
thermore, the proof of the algorithm correctness is given. In Section 4, we make some final notes and
suggestions regarding the future investigation.

2 PRELIMINARIES

We assume a reader is familiar with formal language theory (for further reference, see [2]).

A scattered context grammar (SCG, see [3], [4]) is a quadruple, G = (V,T,P,S), where V is a total
alphabet, T ⊂ V is a finite set of terminal symbols (terminals), S ∈ V −T is the starting symbol and
P is a finite set of productions of the form (A1, . . . ,An)→ (x1, . . . ,xn), where Ai ∈V −T and xi ∈V ∗

for all i : 1≤ i≤ n.

A propagating SCG is a SCG G = (V,T,P,S) in which every (A1, . . . ,An)→ (x1, . . . ,xn) ∈ P satisfies
xi ∈V+ for all i : 1≤ i≤ n.

Let G = (V,T,P,S) be a (propagating) SCG, y = u1A1u2 . . .unAnun+1, z = u1x1u2 . . .unxnun+1, y,z ∈
V ∗, p = (A1, . . . ,An)→ (x1, . . . ,xn) ∈ P. Then y directly derives z in SCG G according to the pro-

duction p, y⇒G z [p] (or simply y⇒G z). Let⇒+
G and⇒∗G denote transitive and reflexive-transitive

closure of⇒G, respectively.

Let G= (V,T,P,S) be a (propagating) SCG. Language generated by G is denoted by L(G) and defined
as L(G) = {w : w ∈ T ∗,S⇒∗G w}.

Usually it is very obvious which grammar we are talking about, so we will sometimes abbreviate⇒G

to⇒.

We also assume a reader is familiar with graph theory. By tree, we will mean an labeled ordered
tree. Let ϒ be a tree, Θ be a set of nodes in ϒ, θ ∈ Θ, n be a nonnegative integer. Then root(ϒ)
denotes the root node of the tree, child(θ) denotes an n-tuple of node’s child nodes (zero-tuple for
leaf nodes), lab(θ) is a label of the node θ. Sometimes we will generalize the notion of lab to tuples
– lab((θ1, . . . ,θn)) = (lab(θ1), . . . , lab(θn))

Let G = (V,T,P,S) be a SCG and p = (A1, . . . ,Ai, . . . ,An)→ (x1, . . . ,xi, . . . ,xn) ∈ P, xi = a1 . . .am,
m ≥ 0, a j ∈ V for all j : 0 ≤ j ≤ m. Production tree of the i-th component of the production p,
denoted by pt(p, i), is a labeled elementary tree ϒ such that lab(root(ϒ)) = Ai and

lab(child(root(ϒ))) =
{

λ if m = 0
(a1, . . . ,am) otherwise

Let us have a SCG G = (V,T,P,S) and a derivation S⇒ w1 ⇒ . . .⇒ wm. The derivation tree cor-
responding to this derivation, denoted by S⇒ w1⇒ . . .⇒ wm[[ϒ]], is a labeled tree ϒ constructed as
follows:

1. Create a root node, lab(root(ϒ)) = S.

2. Set j = 0.

3. Repeat until j = m:

(a) Let w j = u1A1 . . .Anun+1, w j+1 = u1x1 . . .xnun+1, Ai ∈V −T , xi ∈V ∗ for all i : 1≤ i≤ n,
p=(A1, . . . ,An)→ (x1, . . . ,xn)∈P, θ1, . . .θn be a leaf nodes of ϒ in this order (considering
inorder tree traversal), lab(θi) = Ai. Add child nodes to θ1 through θn so that it holds that
subtree rooted at θ j is a pt(p, i).

(b) Increment j.

Let dt(G) denote a set of all derivation trees corresponding to successful derivations of grammar G.

A left-bracketed representation (see [5]) of a derivation tree ϒ, denoted by lbr(ϒ), is defined recur-
sively as follows:

1. If root(ϒ) = (), then lbr(ϒ) = lab(root(ϒ)).

2. If child(root(ϒ)) = (θ1, . . . ,θn), then lbr(T) = lab(root(ϒ))〈lbr(ϒ1) . . . lbr(ϒn)〉, where ϒi is a
subtree rooted at θi for all i: 1≤ i≤ n.

Definition 2.1. Let G = (V,T,P,S) be a SCG. Then4G denotes a set of tree SCGs corresponding to
SCG G, that is

4G =
{

G4 : L(G4) = {lbr(ϒ) : S⇒∗G w [[ϒ]], w ∈ T ∗}
}
.

3 RESULTS

In this section, we present our algorithm.

Algorithm 3.1. Construction of tree SCG G4 ∈4G

Input: a SCG G = (V,T,P,S)
Output: a propagating SCG G4 = (V4,T4,P4,S4) ∈4G

Method:

1. Let T4 =V ∪{〈,〉,λ}, N4 = {A4 : A ∈ (V −T)}, N4∩ (V −T) = /0, and V4 = T4∪N4.

2. Let h be a coding h : V ∗→ (T ∪ (V4−T4))∗ such that h(a) = a for every a ∈ T and h(A) = A4
for every A ∈ (V −T).
Let g be a function g : V ∗→ (T ∪ (V4−T4)∪{λ})∗ such that:

g(x) =
{

λ if x = ε

h(x) otherwise

3. Initially set P4 = /0.

4. For each production (A1, . . . ,An)→ (x1, . . . ,xn)∈P add (A14 , . . . ,An4)→ (A1〈g(x1)〉, . . . ,An〈g(xn)〉)
to P4.

Lemma 3.1. L(G4) = dt(G)

Proof idea We will show that G4 simulates construction of proper derivation tree of G. Whenever
a production of G would be applied to a sentential form, G4 adds child nodes to the leaves and marks
former leaves as inner nodes.

Formal proof

Proof. Let us have a successful derivation S = w0⇒w1⇒ . . .⇒wm, wm ∈ T ∗, in SCG G. Then there
exists a derivation S4 = t0 ⇒ t1 ⇒ . . .⇒ tm, tm ∈ T4, in G4, such that ti represents an unfinished
derivation tree corresponding to the sequence of derivations S = w0⇒ w1⇒ . . .⇒ wi.

Definition 3.2. Let us have a derivation tree ϒ, with set of nodes Θ. Auxilliary derivation tree to a
derivation tree ϒ of grammar G, denoted by ϒ4, is a derivation tree isomorphic to ϒ under isomor-
phism f , such that

lab(f (θ)) =
{

A4 if lab(θ) = A,A ∈V −T ∧ child(θ) = ()
lab(θ) otherwise

Put simply, the labelling of nodes of ϒ differs only in case when some leaf node is labelled by nonter-
minal of grammar G – if the leaf is labeled by a nonterminal A in ϒ, then it is assigned a nonterminal
A4 in ϒ4 instead.

Claim 3.3.
S⇒m

G w [[ϒ]],w ∈V ∗, if and only if S4⇒m
G4 lbr(ϒ4)

Equivalence estabilished in Claim 3.3 can be proven in two steps, one for every direction:

Only if (⇒): This implication can be proven by an induction on the length m of derivations.

• Let m = 0. Then S⇒0
G S [[ϒ]], and S4⇒0

G4 S4. Clearly S4 = lbr(ϒ4), because the only node
of ϒ is the leaf, so it is labeled by S4 instead of S.

• Let us suppose that the implication holds for all derivations of length at most m : m ≥ 0 and
consider a derivation of length m+ 1. By induction hypothesis, if S⇒m

G y [[ϒ]], then S4⇒m
G4

s = lbr(ϒ4).

We have to prove that if S⇒m
G y⇒G z [[ϒ′]], then S4 ⇒m

G4 s⇒G4 t = lbr(ϒ′4). If y ∈ T ∗,
then the derivation step y⇒G z [p] is not possible, so the implication holds. Otherwise, y =
u1A1u2 . . .unAnun+1, z= u1x1u2 . . .unxnun+1, p=(A1, . . . ,An)→ (x1, . . . ,xn)∈P, s= lbr(ϒ4)=
v1A14v2 . . .vnAn4nn+1 .

According to the algorithm 3.1 there exists a production p4 ∈ P4, p4 = (A14 , . . . ,An4)→
(A1〈r1〉, . . . ,An〈rn〉), ri ∈ (T ∪ (V4−T4))∗∪{λ}. It directly follows that there exists a deriva-
tion s⇒G4 t [p4], t = v1A1〈r1〉v2 . . .vnAn〈rn〉nn+1. We see that this derivation step exactly
simmulates one step of construction of auxilliary derivation tree, because for all i : 1 ≤ i ≤ n,
Ai〈ri〉= lbr(ϒ4i), ϒi = pt(p4, i). So it immediately follows that t = lbr(ϒ′4).

If (⇐): This part can be proven by a very similar induction.

• Let m = 0. Then S⇒0
G S [[ϒ]] and S4⇒0

G4 S4. Obviously S4 = lbr(ϒ4).

• Let us suppose that the implication holds for all derivations of length at most m : m ≥ 0, i.e.
S⇒m

G y [[ϒ]] and S4⇒m
G4 s = lbr(ϒ4) (induction hypothesis). We have to prove that if S4⇒m

G4
s⇒G4 t = lbr(ϒ′4), then S⇒m

G y⇒G z [[ϒ′]].

If s∈ T ∗4, then derivation step s⇒G4 t [p4] is not possible, otherwise s= lbr(ϒ4) = v1A14v2 . . .
vnAn4nn+1, t = v1A1〈r1〉v2 . . .vnAn〈rn〉nn+1, p4 = (A14 , . . . ,An4)→ (A1〈r1〉, . . . ,An〈rn〉), ri ∈
(T ∪ (V4−T4))∗∪{λ}, vi ∈V ∗4, A14 ∈V4−T4.

According to the algorithm 3.1 there exists a production p = (A1, . . . ,An)→ (x1, . . . ,xn) ∈ P.
There must exist a derivation y⇒G z [p], where y= u1A1u2 . . .unAnun+1, z= u1x1u2 . . .unxnun+1.
This derivation is precisely the derivation step simmulated by applying the production p4, since
for all i : 1≤ i≤ n, Ai〈ri〉= lbr(ϒ4i) = lbr(pt(p4, i)) and rewriting Ai4 to Ai〈ri〉 exactly follows
the definition of constructing the auxiliary derivation tree – nodes that become nonleaf change
their labelling from Ai4 to Ai.

We see Claim 3.3 holds.

Claim 3.4. Let S⇒m
G w [[ϒ]]. Then w ∈ T ∗ if and only if lbr(ϒ) = lbr(ϒ4).

Proof of Claim 3.4 is very straightforward.

Only if (⇐): Proof by contradiction. Assume the implication is not true, that is w = a1 . . .an ∈
T ∧ lbr(ϒ) 6= lbr(ϒ4), n≥ 0. Since both trees are isomorphic (under isomorphism f), difference must
be in labelling function, so there exists a node θ such that lab(θ) 6= lab(f (θ)). By definition 3.2, this
is possible only if θ is the leaf labeled by nonterminal, therefore |w| = n > 0. Then there must exist
i : 1≤ i≤ n, such that ai ∈V −T . But this is a contradiction, because w ∈ T ∗. (Note: If w = ε, then
for every leaf θ, lab(θ) = λ = lab(f (θ)) – also a contradiction.)

If (⇐): Proof by contradiction. Assume the implication is not true, that is lbr(ϒ) = lbr(ϒ4)∧w =
a1 . . .an /∈ T ∗, n≥ 0. Let Θ be a set of nodes of ϒ and f be a isomorphism according to definition 3.2.
For every leaf node θ ∈ Θ, lab(θ) ∈ T ∪{λ}, otherwise lab(θ) 6= lab(f (θ)) and lbr(ϒ) 6= lbr(ϒ4). If
lab(θ) ∈ T for every leaf node θ, then for every i : 1≤ i≤ n, ai ∈ T ∪{λ}, that is w ∈ T ∗. Either way,
we get a contradiction.

Theorem 3.5. For every SCG G, there exists a propagating SCG G4 ∈4G.

Proof. Since the Algorithm 3.1 is correct (follows from Lemma 3.1) and it always terminates (due to
the finiteness of the set of productions of the original grammar), it directly follows that this theorem
holds.

4 CONCLUSIONS

We showed that for every SCG G, there exists a propagating SCG generating derivation trees of
G. This observation is of some interest, because we are able to characterize the family of languages
generated by SCGs by propagating SCGs, which are strictly weaker generation mechanisms. Also, the
derivation tree represents potentially very valuable information, particularly in terms of compilation.

In the future, we would like to focus on the case of generating not only the derivation tree, but also the
sentence of the original language. Furthermore, we want to find the practical applications, possibly
in the compiler based on (the subset of) scattered context grammars. In this case, the derivation
tree could be useful for example in the phase right after the parsing of the input sentence, such as
interpretation or generation of three-address code. As we can see, further research of this topic is
neccessary.

ACKNOWLEDGMENT

This work was supported by the Research Plan No. MSM, 0021630528 – Security-Oriented Research
in Information Technology.

REFERENCES

[1] Gao, G.R., Pollock, L., Cavazos, J., Li, X. (Eds.): Languages and Compilers for Parallel Com-
puting. Berlin, DE, Springer 2009, ISBN 3-642-13373-8

[2] Meduna, A.: Automata and Languages: Theory and Applications, London, GB, Springer 2005,
ISBN 1-85233-074-0

[3] Greibach, S., Hopcroft, J.: Scattered Context Grammars. Journal of Computer and System Sci-
ences, Volume 3, Number 3, 2004, pp. 233–247

[4] Meduna, A., Techet, J.: Scattered Context Grammars and their Applications, Ashurst, GB, WIT
Press 2010, ISBN 1845644263

[5] Aho, A.V., Ullman, J.D.: The Theory of Parsing, Translation, and Compiling. Upper Saddle
River, US, Prentice Hall 1972, ISBN 0-13-914556-7

