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ABSTRACT

The very long instruction word (VLIW) processor architecture is focused on a high instruction
level parallelism. Program execution is scheduled statically at compilation time. Therefore,
there is no need for run-time scheduling and dependency checking mechanisms. On the other
hand, all these constraints must be controlled by the compiler. This paper describes usage of
scattered context grammars in order to model instruction level limitations of these processors.
Resulting grammar generates proper assembler code. This concept has two advantages – formal
description of the dependency checking process and high reduction of production rules over
other methods.

1 INTRODUCTION

The idea of the very long instruction word (VLIW) processor architecture is almost 30 years old.
VLIW architecture has been very popular in last decades because of its innovation techniques
in parallel computing. Today, the digital signal processors (DSP) are typical representatives of
VLIW architecture.

Primary advantage of this architecture is quite simple, but powerful hardware that provides high
instruction level parallelism. VLIW processors can work quickly and smoothly because there
is no need for conflict checking or planning at run-time. This is also the main disadvantage
– scheduling of parallel computation must be planned statically at program compilation time.
Therefore, compilers must be very sophisticated. They have to control constraints of parallel
operations and operation latencies. One of their key tasks is to avoid read and write conflicts
of operations. Control functions are often handwritten by compiler developers and must be
executed multiple times in order to check all constraints.

Therefore, it would be handy to have a formal method for constraints checking on assembler
grammar level. We propose a grammar that assures correctness of generated program by itself.

2 VLIW ARCHITECTURE OVERVIEW

VLIW processors consist of clusters with functional units [1]. Each functional unit fulfills a
different role, typically arithmetic logic unit (ALU), multiplier, unit for memory access, etc.



Activity of every unit is managed by RISC-like operations.

Most of modern processors are pipelined. However, not all functional units have to be pipelined,
for example that is a case of expensive functional units like dividers. Therefore, not every unit
can handle one operation per cycle. Number of clock cycles needed for operation execution is
called latency. In general, latency of operations may significantly differ – integer addition may
often be done in just one cycle, while floating point division can take up to tens of cycles.

2.1 CONSTRAINTS

The hardware complexity is reduced since execution is statically scheduled by the compiler,
but the architecture is bounded by constrains. Compilers for VLIW architecture have to take
care of all these constraints, mainly correctness of instruction sequences, which means building
instructions with appropriate operations. Compiler must also ensure that operations in the same
instruction will be independent and operation latencies are taken into account. Data or control
conflicts, like register read and write conflicts, are typical dependencies between two operations.

3 DEFINITIONS

Basic knowledge of formal language theory is expected (see, for instance [3, 4]).

Definition 1: A context-free grammar (CFG) is a quadruple G = (V, T, P, S), where V is a
total alphabet, T ⊂ V is the set of terminals, S ∈ V \ T is the start symbol of G and P is a
finite set of rules of the form A→ x,A ∈ V \ T, x ∈ V ∗.

Definition 2: A scattered context grammar (SCG) is a quadruple G = (V, T, P, S), where V is a
total alphabet, T ⊂ V is the set of terminals, S ∈ V \T is the start symbol of G and P is a finite
set of rules of the form (A1, . . . , An)→ (x1, . . . , xn), n ≥ 1,∀Ai : Ai ∈ V \ T,∀xi : xi ∈ V ∗.

Definition 3: Let G = (V, T, P, S) be a SCG,

y = u1A1u2 . . . unAnun+1,
z = u1x1u2 . . . unxnun+1,

y, z ∈ V ∗, p = (A1, . . . , An) → (x1, . . . , xn) ∈ P . Then y directly derives z according to
the rule p, y ⇒G z [p] (or simply y ⇒G z). Let ⇒+ and ⇒∗ denote transitive and reflexive-
transitive closure of⇒, respectively.

Definition 4: Let G = (V, T, P, S) be a SCG. Language generated by G is denoted by L(G)
and defined as L(G) = {w : w ∈ T ∗, S ⇒∗ w}.

We can see that an application of scattered context rule simulates application of several context
free rules in parallel.

4 SCATTERED CONTEXT GRAMMAR AS CONSTRAINTS MODELLER

Assume we want to model one elementary constraint in each instruction – register write conflict.
A number of instruction bits is finite, therefore, number of all allowed instruction combinations
is also finite. Nevertheless, even for very simple hypothetical VLIW processor (see section
4.2) there are more than 52 million allowed combinations. If we want to model the latency



constraints, the number of combinations grows even more. As we can see, constraint modelling
by legal combination enumeration is not possible. Therefore, we need another, formal solution,
such as scattered context grammars. Their exploitation in similar situations is presented in [2].

4.1 SCG GENERATING PROPER VLIW ASSEMBLER CODE

In this section, we present an algorithm for construction SCG generating proper VLIW assem-
bler code.

Input Specification of the VLIW architecture:

• Let n be a number of computational units. Let (u1, . . . , un) : u1, . . . , un ∈ U be an
n-tuple of computational units respecting order of VLIW instruction parts.

• Let Reg be a set of registers Reg = {r1, . . . , r|Reg|}.

• Let I be a set of operations, nop ∈ I . Let comp be a relation comp ⊆ U × I , (u, i) ∈
comp iff computational unit u can compute operation i. (∀u ∈ U : (u, nop) ∈ comp)

• Let params be a function params : I → 2{R,W}∗ , such that params(i) specifies all
formats of operation parameters: W for a register to be written and R for a register to be
read. (params(nop) = {ε})

• Let lat be a function lat : I → N such that lat(i) specifies the latency of operation i (how
many cycles it takes to compute). (lat(nop) = 1)

Output A SCG generating VLIW assembler code that respects latencies and prevents write
conflicts

Method Construct V and T as follows:

• Initially, let T = Reg ∪ I ∪ {′; ;′ }, N = {S}.

• For every computational unit u add Uu and Lu to N . Let ULat = ∅. Let ml(u) be a
maximal latency of operation that can be computed by unit u. For every computational
unit u add 1u, . . . ,ml(u)u, to ULat. Add contents of ULat to N .

• Add $,#, R, and W to N .

• Let X = {x : x ⊆ Reg, |x| < n}. For every x ∈ X add @x to N .

• Let V = N ∪ T .

Construct P as follows:

• Initially, let P = {S → ε, S → @∅Uu1 . . . Uun$Lu1 . . . LuN
#}.

• For every r ∈ Reg add R→ r to P .



• Let nlat be a partial function nlat : U × I → ULat ∪ U such that if (u, i) ∈ comp:

nlat(u, i) =

{
〈lat(i)〉u if lat(i) > 1
Uu otherwise

For every operation format f ∈ params(i) and computational unit u such that (u, i) ∈
comp add rule (Uu, Lu)→ (i f, nlat(u, i)).

• Let A be an integer and decr be a function decr : ULat → ULat ∪ U such that:

decr(〈A〉u) =
{
〈A− 1〉u if A > 1
Uu otherwise

For every 〈A〉u ∈ N add rule (〈A〉u, Lu)→ (nop, decr(〈A〉u)).

• Add special rules to handle write conflicts to P . For every x ∈ X, r ∈ Reg:

– if |x| < n− 1 and r /∈ x, add (@x,W )→ (ε, r@x∪{r}) to P

– if |x| = n− 1 and r /∈ x, add (@x,W )→ (ε, r@∅) to P

• Add rule generating next instruction to P :
∀x ∈ X add (@x, $,#)→ (ε,′ ; ;′@∅, $Lu1 . . . Lun#).

• Add rules that finish generation to P :
∀〈A〉u ∈ V \ T add ($, 〈A〉u)→ ($, ε)
∀u ∈ U add ($, Uu)→ ($, ε)
∀x ∈ X add (@x, $,#)→ (ε,′ ; ;′ , ε)

4.2 EXAMPLE

Imagine VLIW processor with eight registers (r1, . . . , r8), three functional units (A, B, C)
and five operations (op1, . . . , op5). Latencies of operations are 1-1-2-2-3. First two operations
could be executed in functional unit A, third operation in B and the rest in C. Each of the
first four operations read operands from registers and writes result to a register specified as
its first argument. Fifth operation only reads from two registers. With the previously defined
algorithm, we construct scattered context grammar for generation of proper assembler code for
this processor. Derivation of simple code with one instruction may proceed as follows:

S ⇒ @∅ UA UB UC $ LA LB LC #
⇒∗ @∅ op1W RR op3W RR op4W R $ UA 〈2〉B 〈3〉C #
⇒ op1 @∅ W RR op3W RR op4W R $ UA 〈2〉B 〈3〉C #
⇒ op1 r1 @{r1} R R op3W RR op4W R $ UA 〈2〉B 〈3〉C #
⇒∗ op1 r1 r2 r3 op3 @{r1} W RR op4W R $ UA 〈2〉B 〈3〉C #
⇒ op1 r1 r2 r3 op3 r4 @{r1,r4} R R op4W R $ UA 〈2〉B 〈3〉C #
⇒∗ op1 r1 r2 r3 op3 r4 r5 r6 op4 @{r1,r4} W R $ UA 〈2〉B 〈3〉C #
⇒∗ op1 r1 r2 r3 op3 r4 r5 r6 op4 r7 @∅ R $ UA 〈2〉B 〈3〉C #
⇒∗ op1 r1 r2 r3 op3 r4 r5 r6 op4 r7 r8 @∅ $ UA 〈2〉B 〈3〉C #
⇒∗ op1 r1 r2 r3 op3 r4 r5 r6 op4 r7 r8 ; ;

The last derivation step can be changed in to generation of next instruction. As we see it is not
possible to generate a sentence (i.e., program) with write conflicts or incorrect latency.



Table 1 shows comparison of several types of grammars that can be used to define the language
of proper assembler programs (with and without latency checking). The number of rules needed
by scattered context grammar is significantly lower than others. Note: the number of rules in
right regular grammar and right linear grammar is the same. This is because of assembler syntax
chosen for this simple example. Generally, the number of rules in right linear grammar is lower.

Architecture Pipelined Not-pipelined
Grammar type Rules
Right Regular 1165 4788
Right Linear 1165 4788
Context Free 449 1848
Scattered Context 324 333

Table 1: Assembler generators for simple VLIW processor.

5 CONCLUSIONS

High performance of VLIW processor architecture has also its drawbacks. Constraints checking
of programs for VLIW architecture has to be done statically at compilation time, which means
register checking of write conflicts, keeping of operation latency, etc.

As shown in this paper, scattered context grammars are effective tools for modelling these
constraints. Number of rules needed for generation of proper assembler code is significantly
lower than the number needed by other types of grammars.

Further research of this topic is necessary, especially utilization of scattered context grammars
by compiler schedulers. With this concept we will be able to automate code generation process.
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Development Environment for Microprocessor Design, FR-TI1/038 - System for Programming
and Realization of Embedded Systems, BUT FIT grant FIT-S-10-2 and by the Research Plan
No. MSM, 0021630528 – Security-Oriented Research in Information Technology.

REFERENCES

[1] Fisher, J. A., Faraboschi, P., Young, C.: Embedded Computing – A VLIW Approach to
Architecture, Compilers, and Tools. Morgan-Kaufmann Elsevier Publishers, 2005, pp. 712,
ISBN 978-1-55860-766-8.
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