ON RELATIONS ON PRODUCTIONS FOR
COOPERATIVE DISTRIBUTED GRAMMAR SYSTEMS

Filip Goldefus
Postgraduate Programme (3), FIT BUT
E-mail: igoldefu@fit.vutbr.cz

Supervised by: Alexander Meduna

E-mail: meduna@fit.vutbr.cz

ABSTRACT

The present paper introduces cooperative distributed grammar systems with ordered grammars
as components. These grammars have a ordering on productions, which leads to a increase of
the generative power compared to a cooperative distributed grammar systems with context-free
grammars as components. The cooperating mode =2 is investigated and proved that cooper-
ative distributed grammar systems with ordered grammars as components are as powerful as
programmed grammars with appearance checking containing erasing productions.

1 INTRODUCTION

In the formal language theory, cooperative distributed grammar systems are based on context-
free productions, or more precisely context-free grammars. The present paper introduces or-
dered grammars as components of cooperative distributed grammar systems and investigates
their generative power.

The ordered grammars ([3]), as their name indicates, has an ordering on productions, which
limits the nondeterminism on derivations, such that not every production is applicable on a
sentential form, compared to the context-free grammars with same productions and sentential
form.

This paper proves that for every programmed grammar with appearance checking consisting
erasing productions ([1]), there exists a cooperative distributed grammar system working in
mode =2 generating the same language. The class of languages generated by programmed
grammars with appearance checking is equal to the class of recursively enumerable languages
from Chomsky hierarchy ([2]).

2 PRELIMINARIES AND DEFINITIONS

We assume that reader is familiar with the language theory (see [2]). A context-free grammar is
a quadruple, G = (N, T,S,P), where N is a finite set of nonterminal symbols, 7 is a finite set of
terminal symbols, S € N is the starting nonterminal (axiom), and P is a finite set of productions
of the form p: A — o, with A € N,o € (NUT)* and p is unique label. For p: A — v and
x,y € V*, we say that x directly derives y, written as x = uAw = uvw =y [p| or, simply, x = y.

In the standard manner, extend = to =", where n > 0; then, based on =", define = and =*.
The language of G, L(G), is defined as L(G) = {w € T*|S =" w}.

A programmed grammar with appearance checking is a triple, H = (G,R,F), where G =
(N,T,S,P) is a context-free grammar, and R,F are finite relations on P. If p: A - v € P,
R(p) =W, and F(p) = X, we write (p : A — x,W,X), where W and X are success and fail-
ure fields, respectively. For (x, p), (y,q) € (NUT)* x P, (x,p) = (y,q) in H if either x =y [p]
in G and g € R(p), or x =y, g € F(p), p is not applicable to x. The language of H, L(H), is
defined as L(H) = {w € T*|(S,p) =" (w,q),p,q € P}. For every programmed grammar with
appearance checking, H = (G,R,F), where G = (N, T,S,P), there exists a well-formed pro-
grammed grammar with appearance checking M = (G',R',F'), with G = (N, T,S,P’), such that
L(H) = L(M) and for every production p € P’, R'(p) # 0 and F'(p) # 0. The proof is left to
reader.

An ordered grammar is a quadruple G = (N,T,S,P) where N,T and S are specified as in a
context-free grammar and P is a finite partially ordered set of context-free productions, the
ordering relation is transitive, denoted by <. For x,y € (NUT)*, x =y, iff there is a production
p : A — wsuch that x = ¥’Ax”, y = x¥'wx” and there is no production g : B — v € P such that
g < p and B occurs in x, we say p is greater than g.

A ordered cooperating distributed (OCD) grammar system of degree n is an (n+ 3)-tuple I' =
(N,T,S, Py,...,P,), where for all i = 1,...,n, each component G; = (N,T,P;,S) is a ordered
grammar, for n > 1.

LetI'=(N,T,S,Py,...,P,) be a OCD grammar system of degree n, for 1 <i < n, the k-steps
(=k-mode) derivation of i-th component denoted =7, is defined by x =% y for x,y € (NUT)*
iff there are x1,...,x; € (NUT)*such that x = x1, y = x4 and x; = x4 foreach 1 < j <k
in a ordered grammar G; = (N, T, P,,S). The =~** denotes the reflexive and transitive closure
of the relation =% . The language of I in =k-mode is defined as L_(I') = {w € T*|S :>§k
wi =25 = e =wn > Lije{l,...,n}, 1 < j<n}.

The families of languages generated by programmed grammars with appearance checking con-
sisting erasing productions, ordered grammars, cooperating grammars of degree n in mode =k
and ordered cooperating grammars of degree n in mode =k, respectively, are denoted by PE.,
OR, CD:k(I’L), OCD:k(n).

MAIN RESULTS

This section proves that cooperative distributed grammar systems with ordered grammars as
components are as powerful as programmed grammars with appearance checking.

Theorem 1. PS. =J;_, OCD_(n).

Proof. Let H = (G,R,F) be a well-formed programmed grammar with appearance checking
and G = (N,T,S,P), construct a OCD grammar system of degree 2|P|+ 1, I' = (A, T,Sr,
Po,..., P2|P|), such that A’ :{Sr} UN<> UNO with N<> = {(X;p) |X eNUT,p:A—ve P} and

N() ={X|X € N<>} U{(e;p)|p: A — v € P}. The sets of productions are defined as follows.

Letp: X = X1 X5...X, € P X, € (NUT),1 <i<n,q€R(p),and r € F(p), create a set P, such
that k is unique, 1 <k < |P|, and P :Pkl UP,%UP,?, where

I Pl ={X > X|X €Ny},

2. Ifn> 1, then P? = {(X;p) — (X1:9)(X2;p) ... (Xu;p) }, else P2 = {(X;p) — (€;q)}
3. P = {(vip) > FiAlY € (NUT)}.

The following inequations hold, for all p € P!, g € P2, r € P,g’, p<g,p<randg<r.

Create a set P, = Pk1 Usz corresponding to a production p : X — v € P, with unique k, |P|+ 1 <
k < 2|P| such that

1. Pl ={(X;q) = (X;p)|X € (NUT),q:Y = z€P—{p:X = v}},
2. If [v| > 1, then P? = {(X;p) — (X;p)|X € NUT}, else P2 = {{&;p) — €},

Following inequation holds, for all p € P!, and for all ¢ € sz, p<gq.

The set Py is constructed as follows, Py = P& U Pg U Pg, with

1. Py ={X > X|X €Ny},
2. P3={{a;p) »ala€T, p:X —veP},
3. P ={Sr = (S;p)|p:S—veEPIU{X = X|X € A}

The following inequation holds, for all p € Pkl, and for all g € P,?, p<gq.

The cooperative distributed grammar system I' simulates derivation steps of the programmed
grammar with appearance checking H. A typical sentential form of I is of the form

(X1:p)(X2:p) ... (X3 D).

This form corresponds to the configuration (X;X;...X,,p) of H. Grammar I simulates one
derivation step of grammar H by a sequence of derivation steps. If a sentential form of I
contains a nonterminal (X;;q) € N() then remaining nonterminals in sentential form are syn-
chronized by productions from a set Py, |P|+ 1 < k < 2|P|, corresponding to the production
labeled by g, to the form (X;;q) € Ny, where the second component of nonterminal has to be
the label of production ¢ : X; — B € P.

Every set of production Py, 1 < k < 2|P|, corresponds to a production from programmed gram-
mar H. Some sets of productions contain productions of the form X — X, ensuring that a
sentential form keeps unchanged in case that it contains the nonterminal X.

To prove that L(H) C L(T"), consider a derivation (S,r) =* (A1A2...A;...A;,q) = (B,p) in
H using a production p: X — By...B, € Pbr€ Q,R(p) #0 and F(p) #0. Fori=1,...,n,
A; € (NUT).

Sentential form of I" is of the form

o= (A1;9)(A2:9) ... (Aj-1;0)(Aj; P)(Aj+159) - .- (Ansq)

then there exist k, such that |P| + 1 < k < 2|P| corresponding to the production labeled with p.
IfA; € (NUT),

=7 (A p){(Azip) ... (Aj-1sP)AjP)Aj415p) - (Anip),
else Aj =€ and

=7 (A p) (A2 p) . (Aj-13p)(Ajs13p) - (Anip)
in I' by multiple application of productions from the set of productions P.

Now, there exists Py, with 1 < k < |P| corresponding to the production labeled with p, and a
nonterminal A; = X in the sentential form, so for a productions: X — X;...X, € R(p). f m > 1,
then

(A1;p)(A2;p) ... (Aisp) ... (An; D) =2
(A1:p){A2:p) ... (B1;8)(B2ip) ... (Buip) ... (An; D),

else

(ALp)A2ip) .- (Aip) .- (Auip) =7 (Ap)Azip) .. (&) ... (Auip)

in T". Finally, consider that a nonterminal (X; p) is not present in the sentential form and r €
R(p), thus

(A1 p)(A2p) (A p) .- (Ausp) =1 (Aip) (A2 p) . (Air) ... (Aus p)
in I and the derivation proceeds by induction.

Let (a1;p){az;p)...{as;p) be a sentential form of I" and a; € T for all 1 <i < n, then only

productions form the set Py are applicable and (ay; p)(az; p) ... (an; p) =5>* a1 .. .au. To prove

that L(T") C L(H), consider a shortest derivation of the form

Sr =7 = (A p) (A% p) . (A p) =1 (B13¢)(B2sq) - (Busq)
in I'. Without any loss of generality productions from the set Py are applied on
(A1;p){A2p) .. (An; p),

forAy...A, € T*. Considerk, 1 <k < |P|, if set Py corresponds to a production?:Y — a € P,
if r # p, then there is no production applicable on the sentential form (Ay; p)(Az;p) ... (An; p).
If p=t,p:X —Dy...Ds,A; =X forsome 1 <i<nandgq € R(p), then for s > 1

(A1;p)(A2sp) .. (A p) ... (An;p) =
(A1;p)(A2;p)...(D1:q)(D2;p) ... (Ds;p) ... (AniD)

and for s = 0, (A1; p) (A2 p) ... (Aip) ... (Ans p) =72 (A p){Aasp) ... (€:q) ... (Ay;p) inT.

Now, assume that (X; p) is not present in the sentential form and g € F(p), then

(A1;p)(A2;p) ... (Aisp) ... (An; D) =k
(A1;p)(A2;p) . (Ai—1;p) (A @) (Aiv1:p) - - - (Aus D)

inI forsome 1 <i<n.

Let sentential form is of the form (By;p)(B2;p) ... (Bi—1;p){(Bi;q){Bi+1;p) - .- (Bm; p). All sets
of productions except Py, |P|+ 1 < k < 2|P| , corresponding to a production g : Z — B € P,
contains productions X — X for X € N()' The set of productions Py ensures, that nonterminals
(Bj;p) € Ny will be rewritten on (Bj;q), j = {1,...,m} — {i}, and consequently for B; € (N U
T),

(B139)(B2:q) ... (Bi—1:q)(Bi:q)(Bi+13q) ... (Bm3q) =7 >
(B1;q)(B2:q) - .- (Bi-1:q)(Bi;q)(Bi+1:q) - - - (Bm3q),

and for B; = ¢

(B1;q)(B2:q) ... (Bi—1:q)(€i:q) (Bix1:q) - .. (Bum3q) =7>
(B1;q)(B2;q) ... (Bi—1:9)(Bi+1:q) - .. (Bm:q),

in I'. The proof now proceeds by induction.

As any derivation of I" finishes by using productions from Py when by ...b,, € T , so

(b1:9)(b2:q) ... (biq) =57 biba...bp.
By Church’s thesis, P5, = RE, so P%, = ;. OCD—;(n). O

>t ac

4 CONCLUSIONS

We denote by CF the class of context-free languages, FOR denotes the class of languages
generated by forbidding grammars and CS denotes the class of context sensitive languages.
Recall that it is well-known (see [4]) that CF = |J,,_,CD—(n), FOR = OR C CS, P5. = RE.
Previous section proved that RE = P5. = |J,_; OCD—»(n).

REFERENCES

[1] Jurgen Dassow and Gheorge Paun. Regulated Rewriting in Formal Language Theory.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1990.

[2] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to Automata The-
ory, Languages, and Computation (3rd Edition). Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2006.

[3] Carlos Martin-Vide, Victor Mitrana, and Gheorghe Paun. Formal Languages and Applica-
tions. Springer-Verlag, London, UK, 2004.

[4] Grzegorz Rozenberg and Arto Salomaa, editors. Handbook of Formal Languages, vol. 2:
Linear Modeling: Background and Application. Springer-Verlag New York, Inc., New
York, NY, USA, 1997.

