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ABSTRACT

LQ controller with short sample time was used fontcol of wind tunnel. Off-line
identification via output error model was used thiave unbiased approximation of the
process. States variables were estimated via Kédnidter and observer realized as 3th
order discreet model. Overshot was canceled witlostiof stability.

1. INTRODUCTION

In this paper wind tunnel is controlled via LQ aatier. Plant is nonlinear and its output
is significantly influenced by noise. State spaggresentation is created from input output
off-line identification closed to choose operatoint. Short sample times=0.1s is used
for both identification and controller. To achiewmebiased approximation of the plant (with
significant noisy and shoiff) output error identification model was used asnsfigure.l.
States of the plant are estimate via Kalman'srfittied 3th order discreet model. Control
loop properties are compared for both of estimasmd the same LQ controller. Simple
overshot cancelling is realized without lost otodity.

2. IDENTIFICATION
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Figure 1: Basic identification scheme and approximate OEe&hod

2.1. OuTPUT ERROR MODEL

OE model is the widely used structure. It is theest representative of the output error
model structures. The noise is assumed to distiantt pdditively at output. Output error



models are often more realistic model, and thug phexform better than equation error
models. All output error models are nonlinear ieitlparameters and consequently they
are harder to estimate. Optimization algorithm Ldoerg-Marquart will be used for their
nonlinearity.

The model of 3 order is used in this case.
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The model can be rewritten in vector forms as fedio

$(k) =7 ()o(k) 2)
where
(k) =[u(k -1) ulk-2) ulk =3) -y, (k=1) =y, (k-2) =y, (k-3
is the vector of measured inputs and outputs and
a(k) =[0,(k) b, (k) by(k) f.(k) f,(k) fo(k)] (4)

is vector of estimated system parameters.

2.2. OPTIMIZATION ALGORITHM
Identification is based on finding the minimum ot function
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2.3. LEVENBERG-MARQUART ALGORITHM

This method is numerical solution of minimizationns of squares generally nonlinear
function. Iterative algorithm is given by equation

6i)=6(-1)-nla7a+n]"E (11)

Wherei is iteration in step,; is step sizeA is optional parameter which determine
evolution of prediction error artdis error vector.

. CONTROL ALGORITHM
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Figure 2: Optimized structure of LQ controller

Linear quadratic (LQ) controller is used. LQ cofiaois state controller with feedback
proportional gains from process states. Optimised function is

| z( (K)Qe, (k) + u” (K)Ru(k)) (12)

Where matrixR scale controls energy and mat@xscales error of system states. Action
value is computed by

u(k) = =K o x(k) = Ky Ky -+ K K J[WK) %, (K) -+ X (K) €5y (K] (13)

Steady state gaif, g vector is solved as iterative compute of follow
K. =|[R+BTRoB|'BTR,A

Po =Q+K[RK, + (A_ BKLQ)T Fo (A_ BKLQ) 4

WhereK o are state feedback gaimn(k) is request valued andB are state space matrix of
e:(K) without controller
3.1. OBSERVER

Because the plant states aren’t measurable, shaserv@r must be used. Two observers
will be used. Kalman’s filter and observer based3tim order linear discreet model of



plant. State space realization is getting fromlio#-identification. OE model identification
ensure that obtained model will be very good apipnakion of identificated plant.
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Figure 3: State space representation of Kalman's filter udi@#man gain L, 3th order
linear discreet observer for L=0

Kalman filter gainL is computed as steady state solution of equafiéh lfelow. For 3th
order linear discreet observer gaims set to zero.

P=a?APA'+Q
L =PC(C"PC+R)* (15)
P=(-LCT)P(I-LC" ) + LRL",

Where A is system matrix of plant, covariance matx and R are used for model error
compensationy is 1,P covariance matrix.

4. RESULTS
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Figure 4: Off-line identification results, model and planspense to the square input
signal, Ts=0.1s
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Figure 5: Graphs of controlled value and action value witthsbme LQ controller the left,
identical controller with change€,=0 right, Ts=0.1s,disturbance betweef25sand775s.

. CONCLUSION

Wind tunnel was controlled with regulator, whosisture is shown on Figure 2. Structure
of regulator is optimized with LQ algorithm accardito criteria (12). Identification based
on OE model was used to obtain system descriptlon similarity rate show Figure 4.
State estimation was implemented with Kalman’sfiland with observer based on 3th
order linear discreet model. Processes of valueksed loop with both types of observers
can by seen in Figure 5. Control loop with 3th orlileear discreet observer (deadbeat
observer) achieved better results only for distndeacancelling but action values are not
absolutely suitable for practical application. Figb right presents overshoot cancelling,
which is achieved via forward gak,
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