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ABSTRACT 

LQ controller with short sample time was used for control of wind tunnel.  Off-line 
identification via output error model was used to achieve unbiased approximation of the 
process. States variables were estimated via Kalman’s filter and observer realized as 3th 
order discreet model. Overshot was canceled without lost of stability.  

1. INTRODUCTION 

In this paper wind tunnel is controlled via LQ controller.  Plant is nonlinear and its output 
is significantly influenced by noise. State space representation is created from input output 
off-line identification closed to choose operation point. Short sample times T=0.1s is used 
for both identification and controller. To achieve unbiased approximation of the plant (with 
significant noisy and short T) output error identification model was used as show figure.1. 
States of the plant are estimate via Kalman’s filter and 3th order discreet model. Control 
loop properties are compared for both of estimators and the same LQ controller. Simple 
overshot cancelling is realized without lost of stability.     

2. IDENTIFICATION 
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Figure 1: Basic identification scheme and approximate OE model 

2.1. OUTPUT ERROR MODEL  

OE model is the widely used structure. It is the simplest representative of the output error 
model structures. The noise is assumed to disturb plant additively at output. Output error 



models are often more realistic model, and thus they perform better than equation error 
models. All output error models are nonlinear in their parameters and consequently they 
are harder to estimate. Optimization algorithm Lavenberg-Marquart will be used for their 
nonlinearity. 

The model of 3 order is used in this case. 
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The model can be rewritten in vector forms as follows 

 ( ) ( ) ( )kkky T θϕ=ˆ  (2)  

where  

 ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]Tmmm kykykykukukuk 321321 −−−−−−−−−=ϕ  

is the vector of measured inputs and outputs and 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]Tkfkfkfkbkbkbk 321321=θ  (4)  

is vector of estimated system parameters. 

2.2. OPTIMIZATION ALGORITHM  

Identification is based on finding the minimum of cost function 
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where 

 )()()( kykyke m−= , [ ]TneeeE )()1()0( L=  (6)  

and Jacobian of e(k)  
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then 
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and partial derivation of ym are  
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2.3. LEVENBERG-MARQUART ALGORITHM  

This method is numerical solution of minimization sum of squares generally nonlinear 
function. Iterative algorithm is given by equation 

 ( ) ( ) [ ] JEIJJii T 1
1

−+−−= ληθθ  (11) 

Where i is iteration in step, η  is step size, λ is optional parameter which determine 
evolution of prediction error and E is error vector. 

3. CONTROL ALGORITHM 

 

Figure 2: Optimized structure of LQ controller 

Linear quadratic (LQ) controller is used. LQ controller is state controller with feedback 
proportional gains from process states. Optimised cost function is 

 ( ) ( ) ( ) ( )( )∑
∞

=

+=
0k

T
c

T
c kRukukQekeI  (12) 

Where matrix R scale controls energy and matrix Q scales error of system states. Action 
value is computed by  

 ( ) ( ) [ ][ ]TSUMPPPLQ kekxkxkwKKKKkxKku )()()()( 1110 LL +−=−=  (13) 

Steady state gain KLQ vector is solved as iterative compute of follow 
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Where KLQ are state feedback gain, w(k) is request value, A and B are state space matrix of 
ec(k) without controller. 

3.1. OBSERVER 

Because the plant states aren’t measurable, state observer must be used. Two observers 
will be used. Kalman’s filter and observer based on 3th order linear discreet model of 



plant. State space realization is getting from off-line identification. OE model identification 
ensure that obtained model will be very good approximation of identificated plant.   

 

Figure 3: State space representation of Kalman’s filter with Kalman gain L, 3th order 
linear discreet observer for L=0 

Kalman filter gain L is computed as steady state solution of equation (15) below. For 3th 
order linear discreet observer gain L is set to zero.  
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 Where A is system matrix of plant, covariance matrix Q and R are used for model error 
compensation, α  is 1, P covariance matrix.  

4.  RESULTS 
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Figure 4: Off-line identification results, model and plant response to the square input 
signal, Ts=0.1s 
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Figure 5: Graphs of controlled value and action value with the same LQ controller the left, 
identical controller with changed K0=0 right, TS=0.1s, disturbance between 725s and 775s.  

5. CONCLUSION  

Wind tunnel was controlled with regulator, whose structure is shown on Figure 2. Structure 
of regulator is optimized with LQ algorithm according to criteria (12). Identification based 
on OE model was used to obtain system description, the similarity rate show Figure 4. 
State estimation was implemented with Kalman’s filter and with observer based on 3th 
order linear discreet model. Processes of values in closed loop with both types of observers 
can by seen in Figure 5. Control loop with 3th order linear discreet observer (deadbeat 
observer) achieved better results only for disturbance cancelling but action values are not 
absolutely suitable for practical application. Figure 5 right presents overshoot cancelling, 
which is achieved via forward gain K0.   
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