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ABSTRACT

The image reconstruction problem based on elettimcpedance tomography is still a

widely investigated problem with many applicatidnsphysical and biological sciences.

The paper proposes a new way to improve the quallithe image reconstruction of elec-

trical impedance tomography. A developed algoritime advantages of the Tikhonov re-
gularization method with advantages of the Levehsethod. The significant improvement

is also reached when a priori conditions are intoed. In this paper the obtained recon-
struction results are presented

1. INTRODUCTION

Electrical Impedance Tomography (EIT) belongs tahods, which can be used for its
good detection of conductivities tissue changesfifia the distribution of unknown con-
ductivity inside the investigated object we can osthods, which are based on the deter-
ministic or stochastic approach. In the stochampigroach, only the absolute conductivity
in each element is computed and a picture of dffeconductivity is imaged. In the de-
terministic approach, temporal variations in corhty are computed. Individually they
can not provide stable and accurate solutionsetber here we propose a new algorithm.

2. INVERSE PROBLEM

The inverse problem of EIT can be described asreage reconstruction. The aim is to
find the unknown conductivity distribution insideet investigated object. In mathematical
terms the inverse problem can be represented asimigation of the suitable objective
function ¥(s) of 6. To minimize the functio?’(¢) a deterministic approach based on the
Least Squares method [1], [@n be used.

The back image reconstruction is highly ill-posederse problem and so it is necessary to
use some regularization. There are different metloddegularizations. One of them is the
Tikhonov Regularization method (TRM) [3]
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Here ¢ is the volume conductivity distribution vector ihet object,Uy is the vector of
measured voltages on the boundary, @agy(e) is the vector of computed peripheral vol-
tages relatively te, which can be obtained using FEMis a regularization parameter and
L is a regularization matrix. To find the solutioh(@) we applied the Newton-Raphson
method and after the linearization we used thatim procedure
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Here index is thei-th iteration and is the Jacobian index for the forward operaipgy.
The advantages of this method include the fast@em@ance and good reconstruction quali-
ty. The disadvantages include the possibility tdrapped in local minima and therefore a
stable solution is not provided. It is necessarynantion that the stability of the TRM al-
gorithm is also sensitive to the setting of cornadial values of unknown conductivity.
The influence on the reconstructions stability bs® the number of unknown values, so
called Degrees of Freedom (DOF’s), and an optirhalce of the regularization parame-
tera.

Another method is the Level Set method (LSM) [4]~vhich is designed to identify re-
gions with different image or material properti€be distribution of unknown conductivi-
ty o can be described in terms of the level set fundii@depending on the position of the
pointr with respect to the boundarybetween regions with different valueseof
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Then the final conductivity distributioa(r) represents the steady state for sufficiently
large timet of the following time-dependent Hamilton-Jacobi atpn

%—f+F|grad01=0, t - . (4)

The combination of these two methods (TRM and L$MEs the possibility to obtain a
new algorithm which will improve the stability adcuracy of EIT reconstructed images.
During this iteration process, which is based onimizing of the objective functio®{s),
the boundary/ is searched in accordance with the request tlat() minimizes the
WYo), too. We suppose that the unknown conductivisgriiution is given by a piecewise
constant functios(NE).

The new algorithm can be described generally dsvist

= set constraints for conductivity values;
» initialize 6(NE) =60(NE), set parametex, set¥y(o) = ¥(ov);
» |F o) is decreasinglHEN
— run iteration procedure based on TRM in accordavitte(2);
— set interfaces between subregions with differemtdactivities in accordance
with (3), (4);
— reduce the number of elements with unknown conditigtvalues considering
the constraints,
» |F o) is still decreasingTHEN

— run new iteration in accordance with (2) and witteractive updating of inter-
faces.



3. EXAMPLESAND RESULTS

For a new algorithm we will use the objects witblbgical tissues. The model of 2D ar-
rangement with the original conductivity distribarti (Fig. 1) is used to simulate voltage
Um. The conductivity values of different biologicaddues are presented in Tab. 1; these
values were taken from previously published literaton this theme. The total number

of FEM mesh elements is NE = 300.
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Figure 1: The 2D model for simulation

Region name Region color Conductivitys [S/m]
Homogenous region Gray color 0.333
Heart White color 0.667
Lungs Black color 0.100

Table 1: The conductivity values of biological tissues.

The new method was tested under different condititmthe first case we identified non-
homogenous regions and we supposed that the caviluealues were unknown. The re-

construction results are shown in Fig 2; on theyefi can see the result after using TRM
and LSM. The final reconstruction results obtairater applying the second TRM are

0

shown in Fig. 2 on the right.
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Figure 2: Reconstruction results after using TRM and LSMt)Jef
results after the second using TRM (right)




In the second case we identified non-homogenousneginder the stipulation that the
values of the conductivity of all components insttle investigated object (tissue, heart
and lungs) were known. The conductivity distribatafter using TRM and LSM is shown
in Fig. 3 on the left. This figure is result of theconstruction process, when the default
values ofe, for the iteration process can be arbitrarily clmogmsitive values). In the same
figure on the right we can see the result aftersé@nd applying of TRM. In this case the
identical distribution as in the original (Fig. Was obtained. The new algorithm provides
better results, because the image reconstructiesepdo simpler case.
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Figure 3: Reconstruction results after using TRM and LSMt)Jef
results after the second using TRM (right)

The advantages of an improved algorithm are shawthese two above described exam-
ples in the Tab. 2. In this table the number of BXd#hd values of the objective function
WYo) are compared with TRM and with the new methocedasn TRM and LSM with a
priori conditions.

Step of iteration Number of DOF’s Objective function?(e)

TRM | TRM+LSM TRM TRM+LSM TRM TRM+LSM

0 0 300 300 1.0e+05 1.0e+085

15 68 70 15 1.1e+03 2.7e-21

Table 2: Comparison of DOF's¥(s) for TRM and TRM+LSM during reconstructions.

. CONCLUSION

In the paper the idea of the new algorithm of th€ #hage reconstruction is presented.
The new algorithm combines advantages of the L8e¢lmethod and Tikhonov regulari-
zation method together with a priori conditions lgpy. Based on lots of different tests it
is possible to say, that this new way especiallthwising of a priori conditions offers a
stable and useful tool for an efficient image restarction of biologic tissues and their
changes.
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