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ABSTRACT 

The image reconstruction problem based on electrical impedance tomography is still a 
widely investigated problem with many applications in physical and biological sciences. 
The paper proposes a new way to improve the quality of the image reconstruction of elec-
trical impedance tomography. A developed algorithm the advantages of the Tikhonov re-
gularization method with advantages of the Level set method. The significant improvement 
is also reached when a priori conditions are introduced. In this paper the obtained recon-
struction results are presented 

1. INTRODUCTION 

Electrical Impedance Tomography (EIT) belongs to methods, which can be used for its 
good detection of conductivities tissue changes. To find the distribution of unknown con-
ductivity inside the investigated object we can use methods, which are based on the deter-
ministic or stochastic approach. In the stochastic approach, only the absolute conductivity 
in each element is computed and a picture of different conductivity is imaged. In the de-
terministic approach, temporal variations in conductivity are computed. Individually they 
can not provide stable and accurate solutions; therefore here we propose a new algorithm. 

2. INVERSE PROBLEM 

The inverse problem of EIT can be described as an image reconstruction. The aim is to 
find the unknown conductivity distribution inside the investigated object. In mathematical 
terms the inverse problem can be represented as a minimization of the suitable objective 
function Ψ(σ) of σ. To minimize the function Ψ(σ) a deterministic approach based on the 
Least Squares method [1], [2] can be used.  

The back image reconstruction is highly ill-posed inverse problem and so it is necessary to 
use some regularization. There are different methods of regularizations. One of them is the 
Tikhonov Regularization method (TRM) [3] 
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Here σ is the volume conductivity distribution vector in the object, UM is the vector of 
measured voltages on the boundary, and UFEM(σ) is the vector of computed peripheral vol-
tages relatively to σ, which can be obtained using FEM, α is a regularization parameter and 
L is a regularization matrix. To find the solution of (1) we applied the Newton-Raphson 
method and after the linearization we used the iteration procedure 
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Here index i is the i-th iteration and J is the Jacobian index for the forward operator UFEM. 
The advantages of this method include the fast convergence and good reconstruction quali-
ty. The disadvantages include the possibility to be trapped in local minima and therefore a 
stable solution is not provided. It is necessary to mention that the stability of the TRM al-
gorithm is also sensitive to the setting of correct initial values of unknown conductivity. 
The influence on the reconstructions stability has also the number of unknown values, so 
called Degrees of Freedom (DOF’s), and an optimal choice of the regularization parame-
ter α. 

Another method is the Level Set method (LSM) [4 – 6], which is designed to identify re-
gions with different image or material properties. The distribution of unknown conductivi-
ty σ can be described in terms of the level set function F depending on the position of the 
point r with respect to the boundary Γ between regions with different values of σ 
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Then the final conductivity distribution σ(r) represents the steady state for sufficiently 
large time t of the following time-dependent Hamilton-Jacobi equation 
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The combination of these two methods (TRM and LSM) gives the possibility to obtain a 
new algorithm which will improve the stability and accuracy of EIT reconstructed images. 
During this iteration process, which is based on minimizing of the objective function Ψ(σ), 
the boundary Γ is searched in accordance with the request that the σ(r) minimizes the 
Ψ(σ), too. We suppose that the unknown conductivity distribution is given by a piecewise 
constant function σ(NE). 

The new algorithm can be described generally as follows:  

� set constraints for conductivity values; 

�  initialize σ(NE)  = σ0(NE),   set parameter α, set Ψ0(σ) = Ψ(σ0); 

� IF Ψ(σ) is decreasing, THEN  

− run iteration procedure based on TRM in accordance with (2);  
− set interfaces between subregions with different conductivities in accordance 

with (3), (4); 
− reduce the number of elements with unknown conductivity values considering 

the constraints, 

� IF Ψ(σ) is still decreasing, THEN  

− run new iteration in accordance with (2) and with interactive updating of inter-
faces.  



3. EXAMPLES AND RESULTS  

For a new algorithm we will use the objects with biological tissues. The model of 2D ar-
rangement with the original conductivity distribution (Fig. 1) is used to simulate voltage 
UM. The conductivity values of different biological tissues are presented in Tab. 1; these 
values were taken from previously published literature on this theme. The total number 
of FEM mesh elements is NE = 300.  
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Figure 1: The 2D model for simulation  

Region name Region color Conductivity σ [S/m] 

Homogenous region  Gray color 0.333 

Heart White color 0.667 

Lungs Black color 0.100 

Table 1: The conductivity values of biological tissues. 

The new method was tested under different conditions. In the first case we identified non-
homogenous regions and we supposed that the conductivity values were unknown. The re-
construction results are shown in Fig 2; on the left you can see the result after using TRM 
and LSM. The final reconstruction results obtained after applying the second TRM are 
shown in Fig. 2 on the right.  
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Figure 2: Reconstruction results after using TRM and LSM (left),  
results after the second using TRM (right)  



In the second case we identified non-homogenous regions under the stipulation that the 
values of the conductivity of all components inside the investigated object (tissue, heart 
and lungs) were known. The conductivity distribution after using TRM and LSM is shown 
in Fig. 3 on the left. This figure is result of the reconstruction process, when the default 
values of σ0 for the iteration process can be arbitrarily chosen (positive values). In the same 
figure on the right we can see the result after the second applying of TRM. In this case the 
identical distribution as in the original (Fig. 1) was obtained. The new algorithm provides 
better results, because the image reconstruction passes to simpler case.  
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Figure 3: Reconstruction results after using TRM and LSM (left),  
results after the second using TRM (right) 

The advantages of an improved algorithm are shown for these two above described exam-
ples in the Tab. 2. In this table the number of DOF’s and values of the objective function 
Ψ(σ) are compared with TRM and with the new method based on TRM and LSM with a 
priori conditions.  

Step of iteration Number of DOF’s Objective function Ψ(σ) 

TRM TRM+LSM TRM TRM+LSM TRM TRM+LSM 

0 0 300 300 1.0e+05 1.0e+05 

15 68 70 15 1.1e+03 2.7e-21 

Table 2: Comparison of DOF’s, Ψ(σ) for TRM and TRM+LSM during reconstructions. 

4. CONCLUSION 

In the paper the idea of the new algorithm of the EIT image reconstruction is presented. 
The new algorithm combines advantages of the Level Set method and Tikhonov regulari-
zation method together with a priori conditions applying. Based on lots of different tests it 
is possible to say, that this new way especially with using of a priori conditions offers a 
stable and useful tool for an efficient image reconstruction of biologic tissues and their 
changes. 
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