
K-LIMITED ERASING PERFORMED BY
REGULAR-CONTROLLED CONTEXT-FREE

GRAMMARS

Petr Zemek
Master Degree Programme (2), FIT BUT

E-mail: xzemek02@stud.fit.vutbr.cz

Supervised by: Alexander Meduna
E-mail: meduna@fit.vutbr.cz

ABSTRACT

A regular-controlled context-free grammar erases its nonterminals in a k-limited way, where
k ≥ 0, if in every sentential form x of any successful derivation x contains at most k|x|/(k+1)
nonterminals from which it does derive the empty string, where |x| is the length of x. This paper
demonstrates that any regular-controlled context-free grammar that erases its nonterminals in
this way can be converted to an equivalent regular-controlled context-free grammar without any
erasing rules, while it is not known whether this is possible in general.

1 INTRODUCTION

It is a very well known fact that we can convert any context-free grammar with erasing rules to
an equivalent context-free grammar without erasing rules [1]. However, whether erasing rules
can be eliminated from regulated grammars in general, is an open problem [2]. This paper
studies this problem in terms of regular-controlled context-free grammars and presents a condi-
tion, called k-limited erasing. This condition guarantees that if a regular-controlled context-free
grammar satisfies it, we can convert this grammar to an equivalent regular-controlled context-
free grammar without erasing rules.

2 PRELIMINARIES AND DEFINITIONS

This paper assumes that the reader is familiar with the formal language theory (see [1]). For a
set, Q, card(Q) denotes the cardinality of Q. For an alphabet, V , V ∗ represents the free monoid
generated by V under the operation of concatenation. Let ε be the unit of V ∗ and V+ =V ∗−{ε}.
Given a word, w∈V ∗, |w| denotes the length of w. Symbols 〈, 〉, b, c, d, and e are used to clearly
unite more symbols into a single compound symbol.

A context-free grammar (see [1]) is a quadruple, G = (V,T,P,S), where V is the total alphabet,
T ⊂V is the alphabet of terminal symbols, N =V −T is the alphabet of nonterminal symbols,
S ∈ N is the start symbol, and P ⊆ N×V ∗ is a finite relation, called the set of rules. Each rule
(A,y)∈ P is written as A→ y throughout this paper. If u,v∈V ∗ and A→ y∈ P, then uAv⇒ uyv
in G according to A→ y. Let ⇒∗ denote the reflexive-transitive closure of ⇒. The language
of G is denoted as L(G) and defined as L(G) = {w |w ∈ T ∗,S⇒∗ w}. G is said to be ε-free

if every rule A→ y ∈ P satisfies y ∈ V+. Rules of the form A→ ε are called erasing rules or,
more briefly, ε-rules. If every A→ y ∈ P implies y ∈ T (N∪{ε}), then G is a regular grammar.
For any A⇒∗ x, where A ∈ V , x ∈ V ∗, ∆(A⇒∗ x) denotes its corresponding derivation tree
(regarding derivation trees and related notions, we use the terminology of [1]). A derivation
subtree whose frontier is ε is called an ε-subtree.

Let G = (V,T,P,S) be a context-free grammar. Let Ψ be a set of symbols called rule labels
such that card(Ψ) = card(P), and ψ be a bijection from P to Ψ. For simplicity and brevity, to
express that ψ maps a rule A→ x ∈ P to r, where r ∈Ψ, we write r : A→ x ∈ P; in other words,
r : A→ x means ψ(A→ x) = r. The symbols A and x represent the left-hand side of r, denoted
by lhs(r), and the right-hand side of r, denoted by rhs(r), respectively. Let P∗ denote the set of
all sequences of rules from P. By analogy with strings from V ∗, we omit all separating commas
in these sequences, so we write r1r2 . . .rn instead of r1,r2, . . . ,rn, where ri ∈ P, for all 1≤ i≤ n,
for some n > 0 (n = 0 means r1r2 . . .rn = ε). In the standard way, we extend ψ from P∗ to Ψ∗—
that is, ψ(ε) = ε, and ψ(r1r2 . . .rn) = ψ(r1)ψ(r2) . . .ψ(rn), where n ≥ 1. Let w0,w1, . . . ,wn be
a sequence, where wi ∈V ∗, for all 0≤ i≤ n, for some n≥ 0. If w j−1⇒ w j in G according to a
rule r j ∈ P, for 1≤ j ≤ n, then we write w0⇒∗ wn [ψ(r1r2 . . .rn)].

For any context-free grammar G, we automatically assume that V , N, T , S, P, and Ψ (with
possible subscript G) denote its total alphabet, the alphabet of nonterminal symbols, the alphabet
of terminal symbols, the start symbol, the set of rules, and the set of rule labels, respectively.

A regular-controlled context-free grammar (see [2]) is a pair, R = (G,Ξ), where G = (V,T,P,S)
is a context-free grammar and Ξ⊆Ψ∗ is a regular language. The language generated by G with
control language Ξ is denoted by L(G,Ξ) and defined as L(G,Ξ) = {w |w∈ T ∗,S⇒∗ w [α] with
α ∈ Ξ}.

Let k be a non-negative integer. Grammar G with control language Ξ erases its nonterminals in
a k-limited way provided that it satisfies this implication: if S⇒∗ y in G is a derivation of the
form S⇒∗ x⇒∗ y, where x ∈ V+ and y ∈ L(G,Ξ)−{ε}, then in ∆(S⇒∗ y), there are at most
k|x|/(k+1) ε-subtrees rooted at the symbols of x.

3 MAIN RESULT

Algorithm 1. Elimination of ε-rules from any regular-controlled context-free grammar that
erases its nonterminals in a k-limited way.

Input: A context-free grammar, G= (VG,TG,PG,SG), and a regular grammar, H = (VH ,TH ,PH ,
SH), such that G with control language L(H) erases its nonterminals in a k-limited way.

Output: An ε-free context-free grammar, O = (VO,TO,PO,SO), and a regular grammar, Q =
(VQ,TQ,PQ,SQ), such that L(O,L(Q)) = L(G,L(H))−{ε}.

Method: Without any loss of generality, assume that Z /∈ (VH ∪ΨO). Initially, set k′ = k +
max({|rhs(r)| |r ∈ΨG}), TO = TG, VO = TO∪{〈X ,y〉 |X ∈VG,y∈N∗G,0≤ |y| ≤ k′}, SO =
〈SG,ε〉, ΨO = {b〈a,ε〉→ ac |a∈ TG}, PO = {b〈a,ε〉→ ac : 〈a,ε〉→ a |a∈ TG}, TQ = ΨO,
VQ = TQ∪NH ∪{Z}, SQ = SH , and PQ = {Z→ b〈a,ε〉 → acB |B ∈ {Z,ε},a ∈ TG}.
Now, repeat (1) through (3), given next, until none of the sets ΨO,PO,TQ,NQ,PQ can be
extended in this way.

(1) If r : A→ x0X1x1X2x2 . . .Xnxn ∈ PG and 〈A,w〉,〈X1,wx0x1 . . .xn〉 ∈ NO, where Xi ∈
VG, for all 1≤ i≤ n, x j ∈ N∗G, for all 0≤ j ≤ n, w ∈ N∗G, for some n≥ 1

then add s = br,x0,X1x1,X2x2, . . . ,Xnxnc to ΨO and to TQ; add s : 〈A,w〉→ 〈X1,wx0
x1 . . .xn〉〈X2,ε〉 . . .〈Xn,ε〉 to PO; for each B→ r ∈ PH , add B→ sZ to PQ; for
each B→ rC ∈ PH , C ∈ NH , add B→ sC to PQ.

(2) If r : A→ w ∈ PG and 〈X ,uAv〉,〈X ,uwv〉 ∈ NO, where X ∈VG, u,v,w ∈ N∗G
then add s = b〈X ,uAv〉,rc to ΨO and to TQ; add s : 〈X ,uAv〉 → 〈X ,uwv〉 to PO; for

each B→ r ∈ PH , add B→ sZ to PQ; for each B→ rC ∈ PH , add B→ sC to PQ.
(3) If 〈X ,uAv〉, 〈Y,w〉,〈Y,wA〉 ∈ NO, where X ,Y ∈VG, A ∈ NG, u,v,w ∈ N∗G

then add r = b〈X ,uAv〉,〈Y,w〉c and s = b〈X ,uv〉,〈Y,wA〉c to ΨO and to TQ; add
r : 〈X ,uAv〉 → 〈X ,uv〉 and s : 〈Y,w〉 → 〈Y,wA〉 to PO; for each B ∈ NH , add
C = dB,〈X ,uAv〉,〈Y,w〉e to NQ and add B→ rC and C→ sB to PQ.

Basic Idea. The resulting grammar, O, uses compound nonterminals of the form 〈X ,y〉, where
X is a symbol that is not erased during the derivation and y is a string of nonterminals that are
erased during the derivation. The length of y is limited to k′ = k+ p, where p is the length of
the longest right-hand side of a rule from PG.

Rules introduced in (1) are used to simulate a derivation step in G in which one nonterminal is
rewritten to a string of symbols, where at least one of them is not erased during the derivation.
On the other hand, rules introduced in (2) are used to simulate a derivation step in G in which
some to-be-erased nonterminal is rewritten to a string of to-be-erased nonterminals or ε (this
rewrite is done in the second component). Since there might not be enough space to do such
rewrite, rules introduced in (3) are used to move nonterminals between the second components.
Because we do not need to keep any context information, it does not matter where in a sentential
form they occur. In addition, as G erases its nonterminals in a k-limited way, there is always
enough space to accommodate all these to-be-erased nonterminals. At the very end of any
successful derivation, rules of the form 〈a,ε〉 → a, for all a ∈ TG, are used to obtain terminal
symbols from compound nonterminals.

4 CONCLUSION

Algorithm 1 represents a partial solution to the problem concerning the effect of erasing rules
to the generative power of regular-regulated context-free grammars. Indeed, if these grammars
erase their nonterminals in a k-limited way, they are equally powerful with or without erasing
rules. Consequently, to solve this problem completely, the formal language theory can restrict
its attention only to grammars that do not erase their nonterminals in this way because if they
do, the present paper has answered the problem. Due to the requirements imposed on the length
of this paper, the proof that Algorithm 1 is correct is omitted.

Acknowledgement: This work was partially supported by the BUT FIT grant FIT-S-10-2 and
the research plan MSM0021630528.

REFERENCES

[1] A. Meduna. Automata and Languages: Theory and Applications, Springer, London, 2000.
ISBN 1-85233-074-0.

[2] C. Martín-Vide and V. Mitrana and G. Păun, editors. Formal Languages and Applications.
Springer, 2004. ISBN 3-540-20907-7.

