
LEFT-FORBIDDING COOPERATING DISTRIBUTED
GRAMMAR SYSTEMS

Filip Goldefus
Doctoral degree programme (1), FIT BUT

E-mail: igoldefu@fit.vutbr.cz

Supervised by: Alexander Meduna
E-mail: meduna@fit.vutbr.cz

ABSTRACT

In a left-forbidding grammar, a set of nonterminals is attached to every context-free production,
and such a production can rewrite a nonterminal if no symbol from the attached set occurs
to the left of the rewritten nonterminal in the sentential form. The present paper discusses
left-forbidding cooperating distributed grammar systems that work in the t-mode and have left-
forbidding grammars as their components. It demonstrates that with two components, these
systems generate the family of recursively enumerable languages.

1 INTRODUCTION

The present paper discusses cooperating distributed grammar systems working in the t-mode
(see [1] for details). In a left-forbidding grammar, a set of nonterminals is attached to every
context-free production. Such a production can rewrite a nonterminal provided that no symbol
from its attached set occurs to the left of the rewritten nonterminal in the sentential form.

We study the generative power of left-forbidding cooperating distributed grammar systems,
whose components are left-forbidding grammars. In what follows with two components, they
generate the family of recursively enumerable languages. This main result of the present paper
is of some interest because two-component cooperating distributed grammar systems whose
components are ordinary context-free grammars generate only the family of context-free lan-
guages [1].

2 PRELIMINARIES AND DEFINITIONS

This paper assumes that the reader is familiar with formal language theory (see [4]). For an
alphabet V , V ∗ represents the free monoid generated by V . The unit of V ∗ is denoted by ε . Set
V + = V ∗−{ε}. For w ∈ V ∗, |w| denotes the length of w, alph(w) denotes the set of letters
occurring in w, and for all i = 1, . . . , |w|, wi denotes the ith symbol of w. Denote the family of
recursively enumerable languages by LRE .

A state grammar (see [3]) is a sextuple G = (N,T,Q,P,S,q0), where N is a nonterminal al-
phabet, T is a terminal alphabet, V = N ∪ T , Q is a finite set of states, N, T , Q are pairwise
disjoint, S ∈ N is the start symbol, q0 ∈ Q is the start state, and P is a finite set of productions



of the form (A, p)→ (x,q), where p,q ∈ Q, A ∈ N, and x ∈ V ∗. Let lhs((A, p)→ (x,q)) and
rhs((A, p)→ (x,q)) denote (A, p) and (x,q), respectively.

For u,v∈V ∗, u⇒ v provided that u = (rAs, p), v = (rxs,q), for some r,s∈V ∗, (A, p)→ (x,q)∈
P, and for every (B, p)→ (y, t) ∈ P, B /∈ alph(r).

In the standard manner, extend ⇒ to ⇒n, for n ≥ 0, ⇒+, and ⇒∗. The language generated
by G is defined as L(G) = {w ∈ T ∗ : (S,q0)⇒∗ (w,q) for some q ∈ Q}. Denote the family of
languages generated by state grammars as LST . And LST = LRE (see [2]).

A left-forbidding grammar is a quadruple G = (N,T,P,S), where N is a nonterminal alphabet,
T is a terminal alphabet such that N ∩T = /0, V = N ∪T , S ∈ N is the start symbol, and P is a
finite set of productions of the form (A→ x,W ), where A ∈ N, x ∈V ∗, and W ⊆ N.

For u,v ∈ V ∗ and (A→ x,W ) ∈ P, uAv⇒ uxv provided that alph(u)∩W = /0. In the standard
manner, extend⇒ to⇒n, for n ≥ 0,⇒+, and⇒∗. The language generated by G is defined as
L(G) = {w ∈ T ∗ : S⇒∗ w}.

Let G be a left-forbidding grammar. Write u⇒t v in G if u⇒∗ v in G and for no w ∈V ∗, v⇒ w
in G.

Let n ≥ 1. A left-forbidding cooperating distributed grammar system is an (n + 3)-tuple Γ =
(N,T,P1, . . . ,Pn,S) , where for i = 1, . . . ,n, Gi = (N,T,Pi,S) is a left-forbidding grammar. For
u,v ∈V ∗, u⇒i v denotes a derivation step made by a production from Pi.

Γ t-generates z ∈ T ∗ if and only if, for some l ≥ 1, there are αi ∈V ∗, for i = 1, . . . , l, such that
αi⇒t αi+1 in Hi, Hi ∈ {G1, . . . ,Gn}, α1 = S and αl = z. Symbolically written as S⇒t z.

The t-language generated by Γ is defined as L(Γ, t) = {w ∈ T ∗ : S⇒t w}. Denote the family of
languages t-generated by left-forbidding cooperating distributed grammar systems as Lt . For
u,v ∈V ∗, u⇒t

i v if u⇒t v in Gi.

3 MAIN RESULT

Theorem 1. Lt = LRE .

Proof. Clearly, by Church’s thesis, Lt ⊆LRE .

To prove the other inclusion, let L be a recursively enumerable language. There is a state
grammar G = (N,T,Q,P,S,q0) such that L(G) = L. Construct a left-forbidding cooperating
distributed grammar system Γ = (NΓ,T,P1,P2,S′) with NΓ = N∪N1∪N2∪N3, where

N1 = {[x, p,q, i] : x ∈V ∪{ε}, p,q ∈ Q, i ∈ {1,2,3}},
N2 = {〈w〉, [〈w〉, p,q, i] : (X , p)→ (w,q) ∈ P},
N3 = {x̂ : x ∈V ∪{ε}}∪{〈̂w〉 : (X , p)→ (w,q) ∈ P}∪{〈BLOCK〉}.

P1 is constructed as follows:

1. For all r ∈ Q, add (S′→ [S,q0,r,3], /0) to P1.

2. For [B, p,q,1] ∈ N1, if there is no (B, p)→ (w,q) ∈ P, add ([B, p,q,1]→ [B, p,q,2], /0) to P1.
3. For (B,q)→ (w,h) ∈ P, add (B→ 〈w〉,W ) and (B̂→ 〈̂w〉,W ) to P1, where



W = {[x,r,s, i], [〈w〉,r,s, i],〈w〉 ∈NΓ : i = 1}∪{[x,r,s, i]∈N1 : r 6= q or s 6= h, and i = 2}∪{X ∈
N : (X ,q)→ (w,r) ∈ P} .

4. For (B,q)→ (w,h) ∈ P, add ([B,q,h,1]→ [〈w〉,q,h,1], /0) and ([B,q,h,3]→ [〈w〉,q,h,3], /0)
to P1.

5. For a ∈ T ∪{ε}, q,h ∈ Q, i = 1,3, add ([a,q,h, i]→ a, /0) to P1.

6. For a ∈ T ∪{ε} add (â→ a,NΓ) to P1.

7. For a ∈V ∪{ε}, add (â→ 〈BLOCK〉,{[〈w〉,q,h, i],〈w〉 ∈ N2 : i = 1} to P1.

P2 is constructed as follows:

1’. For all p,q,r ∈ Q and x ∈V ∪{ε}, add ([x, p,q,2]→ [x,q,r,1], /0) to P2.

2’. For (B,q)→ (w,h) ∈ P, add (〈w〉 → w,{[x,r,s, i] ∈ N1 : i = 2}) to P2.

3’. For (B,q)→ (w,h) ∈ P and r ∈ Q, add

a) for |w| ≥ 2, ([〈w〉,q,h,1]→ [w1,h,r,1]w2 . . .w|w|−1ŵ|w|, /0) to P2;

b) for |w| ≤ 1, ([〈w〉,q,h,1]→ [w,h,r,1], /0) to P2.

4’. For (B,q)→ (w,h) ∈ P and r ∈ Q, add

a) for |w| ≥ 2, ([〈w〉,q,h,3]→ [w1,h,r,1]w2 . . .w|w|−1ŵ|w|, /0) to P2;

b) for |w| ≤ 1, ([〈w〉,q,h,3]→ [w,h,r,3], /0) to P2.

5’. For (B,q)→ (w,h) ∈ P, add

a) for |w| ≥ 2, (〈̂w〉 → w1 . . .w|w|−1ŵ|w|,{[x,r,s, i] ∈ N1 : i = 2}) to P2;

b) for |w| ≤ 1, (〈̂w〉 → ŵ,{[x,r,s, i] ∈ N1 : i = 2}) to P2.

6’. For all x̂ ∈ N3, add (x̂→ 〈BLOCK〉,{[y,r,s, i] ∈ N1 : i ∈ {1,2}}) to P2.

To prove that L(G)⊆ L(Γ), consider a derivation step (α ′,q)⇒ (β ′,h) in G. Let α ′= a1a2 . . .an
and β ′ = b1b2 . . .bm, where for i = 1, . . . ,n, j = 1, . . . ,m, ai,b j ∈V . We prove that α ⇒+ β in
Γ, for α = [x1,q,r,1]x2 . . .xl−1x̂l , or α = [a1,q,r,3] if |α ′| = 1, where l ≥ 2, x1,xl ∈ V ∪{ε},
xi ∈V , for i = 2, . . . , l−1, and for some r ∈ Q, such that x1x2 . . .xl = a1a2 . . .an.

Assume that α ′⇒ β ′ by a production (ai,q)→ (w,h) ∈ P. Then, (a1 . . .ai−1aiai+1 . . .an,q)⇒
(a1 . . .ai−1wai+1 . . .an,h) in G.

(1) If i = 1 and |w| ≥ 2, then [a1,q,h,3]⇒1 [〈w〉,q,h,3]⇒2 [w1,h,r,1]w2 . . .w|w|−1ŵ|w| in Γ by
productions (4) and (4’a), for some r ∈ Q.

(2) If i = 1 and |w| ≤ 1, then [a1,q,h,3]⇒1 [〈w〉,q,h,3]⇒2 [w,h,r,3] in Γ by productions (4)
and (4’b), for some r ∈ Q.

(3) If i = 1 and x1 = a1, then [x1,q,h,1]x2 . . .xl−1x̂l ⇒1 [〈w〉,q,h,1]x2 . . .xl−1x̂l
⇒2 [w1,h,r,1]w2 . . .w|w|x2 . . .xl−1x̂l in Γ by productions (4) and (3’), for some r ∈Q, where for
w = ε we have w1 = ε .

(4) If 1 < i < n, or i = 1 and x1 6= a1, or i = n and xl 6= an, then



[x1,q,h,1]x2 . . .xl−1x̂l ⇒1 [x1,q,h,2]x2 . . .xi−1xixi+1 . . .xl−1x̂l ⇒1
[x1,q,h,2]x2 . . .xi−1〈w〉xi+1 . . .xl−1x̂l ⇒2 [x1,h,r,1]x2 . . .xi−1〈w〉xi+1 . . .xl−1x̂l ⇒2
[x1,h,r,1]x2 . . .xi−1wxi+1 . . .xl−1x̂l

in Γ by productions (2), (3), (1’), and (2’), for some r ∈ Q. Recall that G rewrites the leftmost
nonterminal rewritable in the current sentential form.

(5) If i = n and xl = an, then

[x1,q,h,1]x2 . . .xl−1x̂l ⇒1 [x1,q,h,2]x2 . . .xl−1x̂l ⇒1

[x1,q,h,2]x2 . . .xl−1〈̂w〉 ⇒2 [x1,h,r,1]x2 . . .xl−1〈̂w〉 ⇒2
[x1,h,r,1]x2 . . .xl−1w1 . . .w|w|−1ŵ|w|

in Γ by productions (2), (3), (1’), and (5’), for some r ∈ Q, where for w = ε we have ŵ1 = ε̂ .
The proof then follows by induction.

Assume that a1 . . .an ∈ T ∗. Then, [a1,q,h,3]⇒1 a1 by a production constructed in (5), and
[x1,q,h,1]x2 . . .xl−1x̂l ⇒t

1 x1x2 . . .xl−1xl by productions constructed in (5) and (6).

Clearly, Γ simulates a derivation of G so that it starts by a production constructed in (1) and
then it continues as shown above.

To prove that L(Γ) ⊆ L(G), consider a terminating derivation in Γ. Such a derivation is of
the form S ⇒t

1 . . .⇒t
2 x0 ⇒t

1 x1 ⇒t
2 x2 ⇒t

1 . . .⇒t
2 w′ ⇒t

1 w , for some w ∈ T ∗. Consider a
subderivation, x0⇒t

1 x1⇒t
2 x2, and examine the forms of this subderivation.

Assume that x0 = [a, p,q,3]. If a ∈ N, then only a production constructed in (4), corresponding
to (a, p)→ (u,q) ∈ P, is applicable.

|u| ≥ 2: Then, after the production constructed in (4), no production from P1 is applicable
and, only a production constructed in (4’a) is applicable. Thus, [a, p,q,3]⇒t

1 [〈u〉, p,q,3]⇒t
2

[u1,q,h,1]u2 . . .u|u|−1û|u| in Γ.

|u| ≤ 1: Then, after the production constructed in (4), no production from P1 is applicable,
and only a production constructed in (4’b) is applicable. Thus, [a, p,q,3]⇒t

1 [〈u〉, p,q,3]⇒t
2

[u,q,h,3] in Γ.

Clearly, (a, p) ⇒ (u,q) in G. If a ∈ T ∪ {ε}, then only a production constructed in (5) is
applicable. Thus, [a, p,q,3]⇒t

1 a.

Assume that x0 = [a1, p,q,1]a2 . . .an−1ân. If a1 ∈ N, then:

1. Assume that (a1, p) → (u,q) ∈ P. Then, no productions constructed in (2) and (3) are
applicable because all nonterminals of the form [x,r,s,1] ∈ NΓ are included in the forbidding
set of productions constructed in (3). Thus, only a production constructed in (4), corresponding
to (a1, p)→ (u,q), is applicable. Then, only a production constructed in (3’) is applicable.
Thus, [a1, p,q,1]a2 . . .an−1ân⇒t

1 [〈u〉, p,q,1]a2 . . .an−1ân⇒t
2 [u1,q,h,1]u2 . . .u|u|a2 . . .an−1ân ,

where u1 = ε if |u|= 0. Again, (a1 . . .an, p)⇒ (ua2 . . .an,q) in G.

2. Assume that there is no production (a1, p)→ (v,q) in P. Then, only a production constructed
in (2) is applicable. Then, only a production constructed in (3) is applicable, corresponding
to (a j, p)→ (u,q) ∈ P, for some 1 < j ≤ n, and such that there is no applicable production
(ak, p)→ (w, t) ∈ P, for all k < j; of course, if there is no such production, then a production
constructed in (7) blocks the derivation. Then, only a production constructed in (1’) is applica-



ble. Thus, [a1, p,q,1]a2 . . .a j−1a ja j+1 . . .an−1ân⇒1 [a1, p,q,2]a2 . . .a j−1a ja j+1 . . .an−1ân⇒1
[a1, p,q,2]a2 . . .a j−1〈u〉a j+1 . . .an−1ân⇒2 [a1,q,h,1]a2 . . .a j−1〈u〉a j+1 . . .an−1ân .

(i) Assume that j < n. Then, only a production constructed in (2’) is applicable. Thus,

[a1,q,h,1]a2 . . .a j−1〈u〉a j+1 . . .an−1ân ⇒t
2 [a1,q,h,1]a2 . . .a j−1ua j+1 . . .an−1ân .

Again, (a1 . . .an, p)⇒ (a1 . . .a j−1ua j+1 . . .an,q) in G.

(ii) Assume that j = n. Then, only a production constructed in (5’) is applicable. Thus,

[a1,q,h,1]a2 . . .an−1〈̂u〉 ⇒t
2 [a1,q,h,1]a2 . . .u1 . . .u|u|−1û|u| .

In case |u|= 0, we have u|u| = ε . Again, (a1 . . .an−1an, p)⇒ (a1 . . .an−1u,q) in G.

If a1 ∈ T ∪{ε}, then only productions constructed in (2), (5) and (7) are applicable.

1. Let, for all i = 2, . . . ,n, ai ∈ T ∪{ε}. Consider a production constructed in (2), then

[a1, p,q,1]a2 . . .an−1ân ⇒1 [a1, p,q,2]a2 . . .an−1ân

and only a production constructed in (7) is applicable. However, these productions block the
derivation. Thus, only a production constructed in (5) is now applicable in the terminal deriva-
tion, i.e., [a1, p,q,1]a2 . . .an−1ân⇒1 a1a2 . . .an−1ân . Then, only productions constructed in (6)
and (7) are applicable. Again, (7) blocks the derivation, thus consider a production constructed
in (6), i.e. a1a2 . . .an−1ân⇒t

1 a1a2 . . .an−1an , which finishes the derivation.

2. Let there be i∈{2, . . . ,n} such that ai ∈N. Consider a production constructed in (2) is applied
first, then the derivation continues as in 2 above because there is no production (a1, p)→ (v,q)
in P.

Consider a production constructed in (5) is applied first, then only productions constructed in (3)
and (7) are applicable. Again, (7) blocks the derivation, thus consider a production constructed
in (3). Then, a1 . . .ak . . .an−1ân⇒t

1 a1 . . .〈w〉 . . .an−1ân and some other productions constructed
in (3) are applicable. After this, no production from P1 is applicable and only productions
constructed in (2’), (5’), and (6’) are applicable. In all cases, production (6’) has to be applied—
the derivation is blocked. The proof then follows by induction.

Any derivation of Γ starts by a production constructed in (1), S′⇒1 [S,q0,r,3], for some r ∈ Q,
and then continues as proved above.
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