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ABSTRACT

In a left-forbidding grammar, a set of nonterminals is attached to every context-free production,
and such a production can rewrite a nonterminal if no symbol from the attached set occurs
to the left of the rewritten nonterminal in the sentential form. The present paper discusses
left-forbidding cooperating distributed grammar systems that work in the -mode and have left-
forbidding grammars as their components. It demonstrates that with two components, these
systems generate the family of recursively enumerable languages.

1 INTRODUCTION

The present paper discusses cooperating distributed grammar systems working in the z-mode
(see [1] for details). In a left-forbidding grammar, a set of nonterminals is attached to every
context-free production. Such a production can rewrite a nonterminal provided that no symbol
from its attached set occurs to the left of the rewritten nonterminal in the sentential form.

We study the generative power of left-forbidding cooperating distributed grammar systems,
whose components are left-forbidding grammars. In what follows with two components, they
generate the family of recursively enumerable languages. This main result of the present paper
is of some interest because two-component cooperating distributed grammar systems whose
components are ordinary context-free grammars generate only the family of context-free lan-

guages [1].

2 PRELIMINARIES AND DEFINITIONS

This paper assumes that the reader is familiar with formal language theory (see [4]). For an
alphabet V, V* represents the free monoid generated by V. The unit of V* is denoted by €. Set
Vvt =V*—{e}. Forw e V* |w| denotes the length of w, alph(w) denotes the set of letters
occurring in w, and for all i = 1,...,|w|, w; denotes the ith symbol of w. Denote the family of
recursively enumerable languages by Zg.

A state grammar (see [3]) is a sextuple G = (N,T,0Q,P,S,qo), where N is a nonterminal al-
phabet, T is a terminal alphabet, V = NUT, Q is a finite set of states, N, T, Q are pairwise
disjoint, S € N is the start symbol, gg € Q is the start state, and P is a finite set of productions



of the form (A, p) — (x,q), where p,g € Q, A € N, and x € V*. Let lhs((A,p) — (x,q)) and
rhs((A, p) — (x,q)) denote (A, p) and (x,q), respectively.

For u,v € V*, u = v provided that u = (rAs, p), v = (rxs,q), for some r,s € V*, (A, p) — (x,q) €
P, and for every (B, p) — (y,t) € P, B ¢ alph(r).

In the standard manner, extend = to =", for n > 0, =", and =*. The language generated
by G is defined as L(G) = {w € T*: (S,q0) =" (w,q) for some g € Q}. Denote the family of
languages generated by state grammars as Zs7. And Lsr = Zre (see [2]).

A left-forbidding grammar is a quadruple G = (N, T,P,S), where N is a nonterminal alphabet,
T is a terminal alphabet such that NNT =0,V =NUT, S € N is the start symbol, and P is a
finite set of productions of the form (A — x,W), where A € N, x € V*,and W C N.

For u,v € V* and (A — x,W) € P, uAv = uxv provided that alph(u) "W = 0. In the standard
manner, extend = to =", for n > 0, =T, and =*. The language generated by G is defined as
LG)={weT*:S="w}.

Let G be a left-forbidding grammar. Write u =; vin Gifu =*vin Gand fornow e V*, v =w
in G.

Let n > 1. A left-forbidding cooperating distributed grammar system is an (n+ 3)-tuple I' =
(N,T,P,...,P,,S), where fori=1,...,n, G;= (N,T,P,S) is a left-forbidding grammar. For
u,v € V*, u =; v denotes a derivation step made by a production from P,.

[ t-generates z € T* if and only if, for some [ > 1, there are o; € V*, fori = 1,...,[, such that
o; = 011 in H;, H; € {Gy,...,G,}, oy = S and a; = z. Symbolically written as S =7 z.

The t-language generated by I is defined as L(I',7) = {w € T* : § =' w}. Denote the family of
languages t-generated by left-forbidding cooperating distributed grammar systems as .%;. For
uveViu=tvifu=,vinG;.

MAIN RESULT
Theorem 1. . = %k.

Proof. Clearly, by Church’s thesis, .4, C ZgE.

To prove the other inclusion, let L be a recursively enumerable language. There is a state
grammar G = (N, T,0,P,S,qp) such that L(G) = L. Construct a left-forbidding cooperating
distributed grammar system I' = (N, T, Py, P»,S’) with Nr = N UN; UN, U N3, where

N1 = A{[x,p,q,il:xeVU{e}, p,ge Q,ic{1,2,3}},
Ny, = {<W>7[<W>7P7Qai]:(XLE)_)(W7C])EP}7

Ny = {x:xeVvu{e}}u{w): (X,p) — (w,q) € PYU{(BLOCK)}.
P, is constructed as follows:

1. For all r € Q, add (S' — [S,g0,1,3],0) to P;.

2. For [B,p,q,1] € Ny, if there is no (B, p) — (w,q) € P, add ([B, p,q,1] — [B,p,q,2],0) to P;.
3. For (B,q) — (w,h) € P, add (B — (w),W) and (B — (w),W) to P|, where



W ={lx,r,s,i],[(w),r,s,i],(w) € Nr:i=1}U{[x,r,s,i] ENy:r#qgors#h, andi =2} U{X €
N:(X,q) — (w,r) € P}.

4. For (B,q) — (w,h) € P, add ([B,q,h,1] — [(w),q,h,1],0) and ([B,q,h,3] — [(w),q,h,3],0)
to Py.

5.Forae TU{e}, q,h € Q,i=1,3,add (a,q,h,i] — a,0) to P,.
6. Fora € TU{¢} add (@ — a,Nr) to Py.
7. Fora € VU{¢e}, add (a — (BLOCK),{[(w),q,h,i],(w) € Ny:i=1}to Py.

P, is constructed as follows:
I’. Forall p,q,r € Qandx € VU{e}, add ([x, p,q,2| — [x,q,1,1],0) to P>.
2’. For (B,q) — (w,h) € P, add ({(w) — w,{[x,r,5,i] € Ny : i =2}) to P;.
3’. For (B,q) — (w,h) € Pand r € Q, add
a) for [w| > 2, ([(w),q,h, 1] — [wi,h, 1, 1]wa oWy - W), 0) to Pa;
b) for |w| < 1, ([(w),q,h, 1] — [w,h,r,1],0) to P>.
4. For (B,q) — (w,h) € P and r € Q, add
a) for [w| > 2, ([(w),q,h,3] — [wi,h, 1, 1Jwa ... W)y 1 W, 0) to P;
b) for |w| < 1, ([(w),q,h,3] — [w,h,r,3],0) to P>.
5. For (B,q) — (w,h) € P, add
(
(

a) for |w| > 2, w> = WL Wy 1 W, 11X, 18,8 € Ny i =2}) to Py

b) for |w| < 1, ( ) = w, {[x,r,5,i] €Ny :i=2}) to P».
6. For all X € N3, add (X — (BLOCK),{[y,r,s,i] € N :i € {1,2}}) to P;.
To prove that L(G) C L(T), consider a derivation step (o’,q) = (B’,h) in G. Let o’ = aja;...a,
and B’ =b1by...by, where fori=1,...,n, j=1,...,m, a;,bj € V. We prove that o« =" f in
[, for a = [x1,q,r, 1|x2...x;_1X], or & = [ay,q,1,3] if |&/| =1, where [ > 2, x1,x, € VU {e},
xieV, fori=2,...,1—1, and for some r € Q, such that x;x>...x; = a1az...a,
Assume that o = B’ by a production (a;,q) — (w,h) € P. Then, (a...a;_1a;a;11 . ..an,q) =
(a1 e A IWajy 1 - - .an,h) in G.
(I)Ifi=1and [w| > 2, then [a1,q,h,3] =1 [(W),q,h,3] =2 [wi,h, 1, 1]wa ... W), _ W), in T by
productions (4) and (4’a), for some r € Q.
(2)Ifi=1and |w| <1, then [a1,q,h,3] = [(W),q,h,3] =2 [w,h,r,3] in I" by productions (4)
and (4°b), for some r € Q.
(3) If i = 1 and x; = ay, then [x1,q,h, 1]xy...x;_1X =1 [(W),q,h, U]x2...x;_ 1%
=5 Wi, b, 1w, W)y X2 ... X;—1X in I by productions (4) and (3°), for some r € Q, where for
w = € we have w| = €.

@ Ifl <i<n,ori=1andx| #aj,ori=nandx; # a,, then



[x1,q,h, Uxp ... xp_1X =1 [xX1,q,h,2)x0 XXXy XX =
[X1,q,1,2]x0 . xi— 1 (W)Xip1 . X 1X =2 XA (W)X . 1X =
X1,y Uxo . X WX - X1
in I" by productions (2), (3), (1’), and (2’), for some r € Q. Recall that G rewrites the leftmost
nonterminal rewritable in the current sentential form.

(5) If i = n and x; = a,, then

[xl,q,h,l]XQ...xl,l)/cl\ =1 [xl,q,h,Z]xz...xl,l)zl\ =1
[xl,q,h,Z]xz...xl_l(w) 2 [xl,h,r,l]xz...xl_1<w> =9

[xl,h, T, 1])62 e X[ WH . .W|W|,1W‘W|

in " by productions (2), (3), (1’), and (5°), for some r € Q, where for w = £ we have w| = €.
The proof then follows by induction.

Assume that a;...a, € T*. Then, [a;,q,h,3] =1 a; by a production constructed in (5), and
[x1,q,h,1]x2 ... x;_1X; = x1x2...x;_1x; by productions constructed in (5) and (6).

Clearly, I' simulates a derivation of G so that it starts by a production constructed in (1) and
then it continues as shown above.

To prove that L(I') C L(G), consider a terminating derivation in I". Such a derivation is of
the form S = ... =, xo = x1 =4 xp =1 ... =5 w = w, for some w € T*. Consider a
subderivation, xo = x; = x», and examine the forms of this subderivation.

Assume that xo = [a, p,q,3]. If a € N, then only a production constructed in (4), corresponding
to (a,p) — (u,q) € P, is applicable.

|u| > 2: Then, after the production constructed in (4), no production from P; is applicable
and, only a production constructed in (4’a) is applicable. Thus, [a, p,q,3] = [(u),p,q,3] =}
[ul,q,h, l]uz “e 'u\u\—1@| inTl.

|u| < 1: Then, after the production constructed in (4), no production from P; is applicable,
and only a production constructed in (4’b) is applicable. Thus, [a,p,q,3] = [(u),p,q,3] =}
[u,q,h,3]inT.

Clearly, (a,p) = (u,q) in G. If a € T U{¢e}, then only a production constructed in (5) is
applicable. Thus, [a, p,q,3] = a.

Assume that xo = [a1, p,q,1]az...a,—1a,. If a; € N, then:

1. Assume that (aj,p) — (u,q) € P. Then, no productions constructed in (2) and (3) are
applicable because all nonterminals of the form [x,r,s, 1] € Nr are included in the forbidding
set of productions constructed in (3). Thus, only a production constructed in (4), corresponding
to (ai,p) — (u,q), is applicable. Then, only a production constructed in (3’) is applicable.
Thus, [a1,p,q,1]az...an1a, = [(u), p,q,]az...an_1an = [u1,q, b, Nua .. .up @z .. .ay—1ay,
where u; = € if |u| = 0. Again, (a;...a,,p) = (uay...a,,q) in G.

2. Assume that there is no production (ay, p) — (v,q) in P. Then, only a production constructed
in (2) is applicable. Then, only a production constructed in (3) is applicable, corresponding
to (aj,p) — (u,q) € P, for some 1 < j < n, and such that there is no applicable production
(ax,p) — (w,t) € P, for all k < j; of course, if there is no such production, then a production
constructed in (7) blocks the derivation. Then, only a production constructed in (1’) is applica-



ble. Thus, [a1,p,q,1lay...aj_1ajaj1...ap—10, =1 [a1,p,q,2)az...aj_1ajaj11 ...Gn_18y =1
lai,p,q,2]as...aj_1(uyajii...an_1a, =2 a1, q,h,1ax...aj_1(u)aji1...ap—1a,.

(i) Assume that j < n. Then, only a production constructed in (2’) is applicable. Thus,
lai,q,h,1]ay...aj—1(u)aji1...an—1G, =5 lar,q,h1as...aj_uaji...an_1Gy.

Again, (ay...an,p) = (a1...aj_1uajqy ...an,q) in G.

(i1) Assume that j = n. Then, only a production constructed in (5°) is applicable. Thus,

—

[ahq’h’ ]]a2 . ,an71<u> :>t2 [al,q,h, 1]a2 751 u‘u‘_lﬁ‘;‘ .

In case |u| = 0, we have u),| = €. Again, (ay...ap—1ay,p) = (ay...ay—1u,q) in G.
If a; € T U{e}, then only productions constructed in (2), (5) and (7) are applicable.
1. Let, foralli =2,...,n,a; € T U{e}. Consider a production constructed in (2), then

[a17p7Qa1]a2---an71é;1 =1 [017P7q72]02---an—1@

and only a production constructed in (7) is applicable. However, these productions block the
derivation. Thus, only a production constructed in (5) is now applicable in the terminal deriva-
tion, i.e., a1, p,q,1]az...ay—1a, =1 aiaz ...a,—1a, . Then, only productions constructed in (6)
and (7) are applicable. Again, (7) blocks the derivation, thus consider a production constructed
in (6),i.e. ajay...a,_1a, ﬁtl ayay...a,_1a, which finishes the derivation.

2. Lettherebei € {2,...,n} such that a; € N. Consider a production constructed in (2) is applied
first, then the derivation continues as in 2 above because there is no production (ay, p) — (v,q)
in P.

Consider a production constructed in (5) is applied first, then only productions constructed in (3)
and (7) are applicable. Again, (7) blocks the derivation, thus consider a production constructed
in (3). Then, aj ...ax...an—1a6, = ai...(w)...a,—1a, and some other productions constructed
in (3) are applicable. After this, no production from P; is applicable and only productions
constructed in (2’), (5°), and (6) are applicable. In all cases, production (6’) has to be applied—
the derivation is blocked. The proof then follows by induction.

Any derivation of T starts by a production constructed in (1), S’ = [S, qo,r,3], for some r € Q,
and then continues as proved above. ]

REFERENCES

[1] Jirgen Dassow, Gheorghe Paun, and Grzegorz Rozenberg. Grammar systems. In Handbook
of formal languages, Vol. 2, pages 155-213. Springer-Verlag, Berlin, 1997.

[2] G. Horvat and A. Meduna. On state grammars. Acta Cybernetica, pages 4—14, 1988.

[3] T. Kasai. An hierarchy between context-free and context-sensitive languages. Journal of
Computer and System Sciences, 4(5):492-508, 1970.

[4] A.Meduna. Automata and Languages: Theory and Applications. Springer-Verlag, London,
2005.



