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ABSTRACT

The aim of this paper is to introduce the problems inherently associated with hyperspectral
data compression and to outline a path towards a feasible hardware implementation. First
of all, the conception of hyperspectral data is clarified together with some background
technical details. Thereafter, brief review of broadly recognized methods for the data com-
pression is given. These initial steps will enable the definition of an appropriate compres-
sion framework, which takes into account the specific nature of hyperspectral data. Re-
cently published methods aptly illustrate the whole conception. Finally, the eventuality of a
hardware implementation together with a perspective of future development is considered.

1. INTRODUCTION

Information processing has been playing a crucial role in modern age. It’s nearly impossi-
ble to imagine everyday life with myriad of sophisticated electronic devices used for vari-
ous tasks. However, during the course of time there appeared a major problem that is: how
to cope with increasing amount of data due to requirements of quality, precision or reliabil-
ity. It’s necessary to realize that communication channels or available storage place can
provide only limited capacity. That’s why data compression has been recently one the most
eminent research issues.

The practical implications, extending far beyond scientific community, are evidently indis-
putable. Rich variety of data compression techniques and principles were devised in order
to fulfil manifold requirements in an application domain. However, careless exploitation of
the major widespread schemes tends to exhibit insufficient performance traits in particular
situations. Such unwanted effects become apparent, for example, with the increasing di-
mensionality of source data to be processed. This paper takes a look on such pitfalls within
the context of hyperspectral data sets.

Let us note that purely intuitive extension of 1D or 2D methods for multidimensional pur-
poses will lead to mismatch with background statistical characteristics in a new domain. In
effect, lower visual quality of resulting image, low execution speed or exhaustion of avail-
able storage space may be encountered. The possible remedy may involve appropriate
combination of relevant methods at hand or their respective changes. Unfortunately, spe-
cific constraints (resulting data size, processing complexity, computational speed, power



demands, etc.) may not be easily satisfied in that way. Then, the other approach, which is
connected with significant effort towards the development of brand-new strategy, comes
onto the stage.

This article will briefly examine a choice of recently published schemes for hyperspectral
data compression which are based on so-called spectral unmixing approach. From this
point of view, common methods for data compression will be considered with the aim to
further improve compression ratio while achieving very good visual quality. Subsequently,
several ideas for hardware acceleration (typically with FPGA circuits) will be presented.

. HYPERSPECTRAL DATA CHARACTERISTICS

The continuous technological advancements in the area of electronics have enabled sophis-
ticated electro-optical remote sensing devices generally known as imagining spectrometers.
Hyperspectral sensors are recognized as one type of such devices. Main reason behind their
deployment is the effort to obtain continuous spectrum of electromagnetic radiation being
reflected form the surface of the Earth. In fact, hyperspectral image resemble a 3D data
cube which consists of contiguous 2D slices (specified by X and Y dimensions) in different
frequency bands (the third dimension). The actual data values are the intensity of the light
at one wavelength from the particular location on Earth.

Now, let’s support the idea of hyperspectral data processing by examples of possible appli-
cations. Due to the nature of such kind of data the perspective application scenarios may
include mineral exploration, environment monitoring, urban planning or military surveil-
lance. Because hyperspectral data are picked up in a large scale manner, it’s possible to
identify and to distinguish between spectrally similar materials (vegetation, for example).

Most of the imaging spectrometers are carried onboard air-borne platforms. One prominent
example is NASA’s Airborne Visible Infra Red Imaging Spectrometer (AVIRIS) [1]. It
produces 224 spectral bands with wavelengths ranging from 400 to 2500 nanometers in
resolution 20 x 20 meters per pixel. The output of spectrometer is scaled and rounded into
resulting 16-bit integers. Each of such images is stored as a block of 614 x 512 pixels.
When the number of band increases there is always corresponding drop in spatial resolu-
tion. That is to say, most of the pixels are mixed with contribution from surrounding pixels.
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Figure 1: An example of hyperspectral data representation in a form of a 3D cube [1].



3. BASIC PRINCIPLES AND METHODS

The tremendous amount of data generated during hyperspectral sensing evidently demands
suitable method of compression just to allow a convenient handling of the information.
Technically speaking, compression is nothing else than the best approximation of the
original data set. Different methods primarily focus on minimizing the correlation among
individual elements (pixels, in our case) and thus get rid of a constituent redundancy. This
approach helps to achieve better compression rate.

Based on the requirements imposed by accuracy or available storage resources, the chosen
compression procedure can follow lossless or lossy direction. Typical compression flow
consists of several stages: correlation removal, information redundancy modelling and en-
tropy coding. Correlation removal is carried out by transform coding or prediction of pixel
values. When specific level of degradation is acceptable, transform or prediction coeffi-
cients may be adequately scaled. The whole process ends up with application of suitable
entropy coding scheme, like Huffman or Arithmetic coder, followed by data delivery.
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Figure 2: [ustration of Karhunen-Loeve transform computation.

Compression suits, which have been devised for hyperspectral data sets, are mostly gov-
erned by the computation flow suggested above. Many of these techniques exploit spatial
and spectral correlation with subsequent entropy coding. Popular examples include vari-
ants of DWT transform [ 1] together with set of partitioning methods such as SPITH and its
variations (SPITH-2D, SPITH-3D, SPECK). Moreover, other approach may involve com-
bination of one-dimensional spectral decorrelator, such as Karhunen-Loeve transform
(KTL) with optimal energy compaction (see Figure 2), and spatial domain methods, mostly
variants of DWT or even JPEG2000 [1]. In particular situations the results can be im-
proved by spectral bands ordering according to their mutual correlation (1).
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4. SPECTRAL UNMIXING APPROACH

The significant computational demands behind optimal transforms like KLT have been re-
cently addressed by the introduction of spectral unmixing techniques. Spectral imaging
sensors often record scenes in which numerous disparate material substances contribute to
spectrum measured from a single pixel. Spectral unmixing is the procedure by which the
measured spectrum of a single pixel can be decomposed into collection of constituent spec-
tra (endmembers) and a set of corresponding fractions (abundances), that indicates the pro-
portion of each endmember present in the given pixel.

Spectral unmixing is usually performed by means of a linear mixture modelling approach.
In mixture modelling the spectral signature of each pixel vector is assumed to be a linear
combination of a limited set of fundamental spectral components — endmembers. Hence,
spectral unmixing can be formally defined in equation (2):
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where x is the d-dimension received pixel spectrum vector, E is the d x M matrix whose
columns are the d-dimension endmembers ¢;, i=1,..., M, a is the M-dimension fractional
abundance vector, and w is the d-dimension additive noise observation vector. The linear
mixing model is subjected to two constraints on the abundance coefficients. Firstly, just to
ensure physical meaning, all abundance coefficients must be non-negative a,>0, i=1,..., M.
Secondly, to account for entire composition, they must be additive, ie. sum of all a; = 1.
After the creation of abundance images these will be fed through the entropy coding stage.

4.1. SELECTED METHODS FOR SPECTRAL UNMIXING COMPRESSION

Pixel Purity Index [2] — This algorithm (PPI) requires a known number of endmembers
and will find spectral signatures from the input hyperspectral data cube. In the N-D space,
a line (skewer vector) is generated randomly and each observation of x is projected onto
the this line. The purity index is incremented for a given x when their projections are lo-
cated at the extremum of the overall projection point. This process may be iterated several
times according to the required number of endmembers.

Automated Morphological Endmember Extraction [3] — The process of endmember esti-
mation is performed locally through sliding window of increasing size. This procedure
profits from the selective sensitivity to noise of of the Associative Morphological Memo-
ries (AMM) for the detection of the morphological independence conditions that are neces-
sary constraint of endmember spectra. This procedure is unsupervised and doesn’t need an
explicit setting of the number of endmember to search for. In fact, AMM’s are the morpho-
logical counterpart of the well known Hopfield Associative Memories. The process of
searching for endmembers involves maximum and/or minimum operators within region of
search space, which is defined by a set of morphologically independent vectors in both
erosive and dilative sense.

Particle Swarm Optimization [4] — This interesting approach to the problem for a deter-
mination of endmembers takes its inspiration from social behaviour of bird flocks. PSO is
generally considered to be an evolutionary computation paradigm. It belongs to the class of
algorithms which simulate biological evolution and are population-based. In a PSO system,
a swarm of individuals, that may be called particles, fly through the search space. Each
particle then represents a candidate solution to the problem.



5. ASSUMPTIONS FOR HARDWARE REALIZATION

The implementation or acceleration of compression methods purely in hardware has a per-
fect sense in situation when significant speedup can be achieved. It’s possible to address
such implications, for example, with systolic array platform (see Figure 3) which can be
transparently mapped onto the structure of FPGA-like circuits. As it is shown, spectral
unmixing and endmember determination is extensively parallelized.
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Figure 3: Endmember selection method realized in a form of systolic array.

6. CONCLUSION AND FUTURE WORK

We expect that our future fork will be directed towards non-conventional methods of
hyperspectral compression. These include methods suggested in (4.1) but our main concern
is primarily tied with an efficient hardware realization. Computational structure like systol-
ic arrays or cellular automata may be a good deal with acceleration in FPGA.
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