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ABSTRACT

This paper deals with techniques of finite state machines (FSMs) localization in FSM-based
softcore intellectual property (IP) cores described in VHDL. An approach based on compilation
techniques is presented. The main goal of the FSM localisation is to supplement additional
information about the softcore for the core user. Three methods and experimental results are
presented in the paper together with the perspective of the future research.

1 INTRODUCTION

Continued advances in both the semiconductor technology and the design automation tools
are enabling engineers to design more complex integrated circuits. This, combined with com-
petitive pressures to improve both the design productivity and the time to market, are driving
engineers towards new System on Chip (SoC) design methodologies and the growing use of pre-
designed embedded, intellectual property (IP) cores within their designs. With an SoC method-
ology, IP cores are integrated with the designer’s own User Defined Logic (UDL) in order to
create complex SoC designs. Examples of embedded cores used in SoC design include func-
tional blocks such as memory, processors (general purpose, graphics and DSP), and complex
standard logic such as industry standard bus interfaces.
It can be seen that core-based SoC methodologies take advantage of design reuse, thereby sig-
nificantly increasing designer productivity of complex electronic systems. The designer can
build a SoC using various cores (similar to using lower level cells in a library) and connect
them using UDL.
According to the level of abstraction IP cores can be divided into (1) softcores, which are cores
in behavioral notation, (2) firmcores, in the form of netlist or register transfer level (RTL) and
(3) hardcores, which are cores in the form of final layout on the silicon mask.

1.1 TESTING OF CONTROLLERS

With the increasing complexity of controller (IP cores with control FSM) designs, testing of
these cores has become a bottleneck in the design process. To cope with the exponential state-
space growth, some techniques have been proposed [3] in order to reduce this state space, but



only at the RT level. To date, no technique, which uses behavioral level of the softcore for FSM
analysis, is known to the author.

1.2 MOTIVATION

I cooperate with company developing intellectual property softcores. An idea emerged to an-
alyze behavioral VHDL code of arbitrary (either created or supplied) softcore to (1) identify
memory structures of the core, (2) identify control structures (FSMs) of the core, if present and
(3) design basic principles of VHDL-synthesized circuit test application.

2 ANALYSIS OF THE IP CORES

Let an FSM based IP core be considered (i.e. a controller). The core has to consist of two parts:
the control part, which covers the combinational logic and the state register of the FSM; and the
data part, which covers data paths used in the core.
After locating the FSM in the behavioral notation of the core, by finding its state control, a
possibility to design an alternative core test appears. This test could check the correctness of
the control part of the core (i.e. FSM states and transitions), data part of the core has to be tested
by other means.
One option to create an alternative controller test is to extented the standard test wrapper ([4])
(TW) of the core by adding new states to the TW and suggesting changes in the core, which
could allow access from the proposed TW to the control structure. This provides a alternative
way to test the finite state machine, by changing and/or observing the machine states directly.
The location of the FSM in softcore can be done through compilation techniques, by a method
which should be independent of the specific coding style of IP core author.
FSM localization is not a new topic in this field of research. Some techniques for FSM ex-
tracting have been already proposed [2]. This work is focused on FSM extraction, but again
at the RT level, to improve functional verification, by converting the HDL model to a hierar-
chical process-module (PM) graph. Typical FSM patterns are to be searched in the PM graph
afterwards. The authors claim that their technique is independent of HDL coding style.
The goal of this method is that the behavioral notation of the IP core, which can be delivered
to the core user, will be supplied with the results of this analysis. The user will therefore
be provided with a detailed information about the alternative way of testing the core. The
information will be useful within the design of the test patterns in the subsequent steps of test
design.

3 LOCATING THE FSM IN CORE

Locating the state control in the behavioral notation of arbitrary IP core must consist of these
steps:
(1) Syntax analysis of the core done by VHDL compiler. This creates the syntax tree of the
core.
(2) Extraction of the input/output ports of the core and extraction of the internal signals of the
core from the syntax tree. These are listed in the table called register table.
(3) Syntax tree analysis by one of the proposed methods (1TR, 2CA or 3PE). These methods
add two attributes to each of the items from register table, called nC as the value of the current



state register candidate and nN as the value of the next state register candidate.
Dividing state registers into two (current and next state registers) are the specifics of analysis at
the behavioral level. After the synthesis into the RTL these two registers are merged into one.
(4) Using the results from the previous step, determine, whether the core under analysis is really
a controller and determine the type of the controller, or it is a NAC (see 3.6) core.
(5) Using the results from step 3, determine which register (or registers) represent the state
control of the core, and provide the core user with this information.

3.1 VHDL COMPILATION

Savant is a project of freely redistributable VHDL analysis tools solved by the University of
Cincinnati’s Experimental Computing Laboratory. Savant has been released under one of the
GNU public licenses. By compiling the source file(s), the extended syntax tree in the IIR
intermediate form becomes available as a result of lexical, syntax and semantics analysis. Using
the Part plugin [1] to Savant, the syntax tree with additional information is saved in the DOT
format for the next steps of analysis.
Syntax tree Z, Z = (V,E) is formally defined by a set of its vertices v ∈ V and edges e ∈ E,
where

E =
{
(u,v, i)

∣∣u,v ∈V ; i ∈ N +}
(1)

the symbol i indicates the index of the edge. All vertices have its type assigned from the lexems
type set A, which consists about 250 lexem types, which can be formalised as a surjective
mapping f (v)→ a, where v ∈V , a ∈ A. From the set A the following lexem types a are used in
this paper: (1) iir_ifstatement, which stands for if statement, (2) iir_casestatement, which stands
for case statement, (3) iir_casestatementalternativelist and (4) iir_casestatementalternative-
byexpression which are used in the subtree of the case statement, (5) iir_signalassignment-
statement for signal or port assignment statement, (6) iir_signalinterfacedeclaration for port
declaration and finally (7) iir_signaldeclaration for signal declaration.
Names of the lexem types comes from VHDL language description.

3.2 PORTS AND SIGNALS EXTRACTION

Input/output ports of the core are of iir_signalinterfacedeclaration type, internal signals are of
iir_signaldeclaration type. Register nodes are searched in the list of all vertices and recorded
into a register table.

3.3 1TR EVALUATION METHOD

This method is based on the identification of transitive closures in an extended syntax tree.
Evaluation method compute the values of nC and nN attributes. The nC value of arbitrary register
s (nC(s)) is computed as follows:

nC(s) = |Ts| (2)

where Ts is a set of ordered n-tuples of the set E:

Ts = {[(u, t1,1)(t1, t2,x1)(t2, t3,x2) . . .(ti,s,xi)]} (3)

where u is of the iir_ifstatement or iir_casestatement type.



Value nN of arbitrary register s (nN(s)) is computed as follows:

nN(s) = |As| (4)

where As is the set of all items from E, where:

As = {(u,s,1)} (5)

and where u is of the iir_signalassignmentstatement type.

3.4 2CA EVALUATION METHOD

2CA method is an extension over 1TR method with different algorithm for the current state
register (nC) computation. The extension takes into account the number of case statement alter-
natives which reflect the nature of the statement. Because 2CA’s results are always better than
that of the 1TR method, it supersedes the 1TR method. The algorithm for nN is same as in the
1TR method, and the nC for arbitrary register s is computed as:

nC(s) = |Ts|+ |Vs| (6)

where Ts is the set of ordered n-tuples of items from E, where:

Ts = {[(u, t1,1)(t1, t2,x1)(t2, t3,x2) . . .(ti,s,xi)]} (7)

where u is of the iir_ifstatement type. Vs is the set of ordered triplets of items from E, where:

Vs = {[(u,s,1)(u, t,2)(t,v,x)]} (8)

where u is of the iir_casestatement type, t is of the iir_casestatementalternativelist and v is of
the iir_casestatementalternativebyexpression type.

3.5 3PE EVALUATION METHOD

At the moment, the third method is under research, which uses similar algorithms for nC and
nN atributes as 2CA method. In addition to this, it uses heuristics to determine, which registers
are uncapable to be neither current nor next state registers and, according to this heuristics, the
nC or nN attribute of the register are reset, so it cannot be chosen as the state control of the core.
Because this method is still under research, there is no formal algorithms, but anyway there are
some experimental results mentioned in the Section 4.

3.6 NAC CORE DETECTION

NAC (which stands not a controller) is a core, which has no FSM to control it. Because the
input of analysis can be arbitrary core, even that one, which is not a controller, the analysis have
to identify this kind of cores. The 1TR and 2CA methods have no concept of detecting NAC
cores, so using defined algorithms on any core with at least one port and/or one internal signal
(that means any sane core) will be addressed as controller with one of the signals selected as
state control. The result of this analysis is evidently wrong. There are some heuristic NAC
detection tricks currently used in the 3PE method, which are under research. If the core is a
controller, then there are three types of FSM coding in the core. The state register can be a
port (external; E) or a signal (internal; I). The state register can be coded as one register, or two
registers, one for the current state and one for the next state of the FSM. Therefore there are six
types of controller cores: E, I, EE, EI, II, IE (the first letter is for the current state).



3.7 STATE REGISTER SELECTION

In the 1TR and 2CA methods, the register with the greatest nC or nN attribute is selected as
the register of the current or next state, respectively. In method 3PE the register a with the
greatest nC (nC(a)) is selected as the register of the current state. If the greatest nN is nN(a), the
state register proposed is a, if it’s other register b, the tree is searched for an n-tuple starting with
irr_signalassignmentstatement and eventually ending in the b register. If the tuple is recognized,
a is the current state register, b the next state register, otherwise the core is NAC. This method
is still under research, so the presented description may change.

4 EXPERIMENTAL RESULTS

The methods described in this paper were evaluated in terms of successful state register iden-
tification. Success rate is given by the ratio of successful identifications to the total number of
experiments. There are two methods of success rate computation, the first one counts successes
only if both current and next state registers are correctly identified (called pessimistic), and the
second one which counts partial success, i.e. when only one of the registers is correctly iden-
tified (called optimistic). Optimistic success rate logically equals or is greater than pessimistic
rate.

5 CONCLUSIONS AND FUTURE RESEARCH

Proposed methods are able to analyse controller softcores with the success rate mentioned, the
first two methods (1TR and 2CA) are already implemented. Success rates of the 1TR method
ranges between 14 and 43%, 2TR method between 29 to 57% and 3PE method 71 to 86%.
The goal of my research is that the target success rate should be 95% on the set of twenty
selected cores. More softcores are yet to be analysed, which will make the success rates of the
proposed methods more accurate. It is expected that the 3PE method will be able to analyse the
set of softcores with the requested 95% success rate and it will be able to identify NAC cores.
This method is currently in the state of testing and formalisation so the implementation of this
method will be available soon.
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