
K-LIMITED ERASING PERFORMED BY SCATTERED
CONTEXT GRAMMARS

Jiří Techet
Doctoral Degree Programme (2), FIT BUT

E-mail: techet@fit.vutbr.cz

Supervised by: Alexander Meduna
E-mail: meduna@fit.vutbr.cz

ABSTRACT

A scattered context grammar, G, erases nonterminals in a k-limited way, where k≥ 1, if in every
sentential form of any derivation, between every two symbols from which G derives non-empty
strings, there occur no more than k nonterminals from which G derives empty words. This
paper demonstrates that any scattered context grammar that erases nonterminals in this way can
be converted to an equivalent scattered context grammar without any erasing productions while
in general, this conversion is impossible.

1 INTRODUCTION

This paper discusses scattered context grammars, which represent an important type of semi-
parallel grammars (see [1, 2, 3, 4, 6, 8, 9]). It concentrates its investigation on the role of erasing
productions and the way they are applied in these grammars. While scattered context grammars
with erasing productions characterize the family of recursively enumerable languages, the same
grammars without erasing productions cannot generate any non-context-sensitive language (see
[3, 4]). As a result, in general, we cannot convert any scattered context grammar with eras-
ing productions to an equivalent scattered context grammar without these productions. In this
paper, we demonstrate that this condition is always possible if the original grammar erases its
nonterminals in a k-limited way, where k is a positive integer; in every sentential form of any
derivation, between any two symbols from which the grammar derives non-empty strings, there
occur no more than k nonterminals from which the grammar derives empty strings later in the
derivation. Consequently, the scattered grammars that have erasing productions but apply them
in a k-limited way are equivalent to the same grammars that do not have erasing productions at
all.
In [3] it was demonstrated that a language generated by propagating scattered context grammars
is closed under restricted homomorphism. Note that our definition of k-limited erasing differs
significantly from the definition of restricted homomorphism. While in case of restricted homo-
morphism a language can be generated by a propagated scattered context grammar in case that
at most k symbols are deleted between every two terminals in a sentence, in case of a scattered
context grammar which erases its nonterminals in a k-limited way virtually unlimited number
of symbols can be deleted between every two terminals in a sentence in case that during the

derivation process there are always at most k erasable symbols between two non-erasable sym-
bols. Therefore, the result presented in this paper represents a generalization of the previously
published result.

2 PRELIMINARIES

We assume that the reader is familiar with the language theory (see [5, 7]). V ∗ represents the
free monoid generated by V under the operation of concatenation. The unit of V ∗ is denoted
by ε. Set V + = V ∗−{ε}. For w ∈ V ∗, |w| and alph(w) denote the length of w and the set of
symbols occurring in w, respectively. For L ⊆ V ∗, alph(L) = {a : a ∈ alph(w),w ∈ L}. Let
pos(a1 . . .ai . . .an, i) = ai for 1 ≤ i ≤ n, a1 . . .an ∈V ∗.
A context-free grammar (see [5]), a CFG for short, is a quadruple, G = (V,T,P,S), where V is
an alphabet, T ⊆ V , S ∈ V −T , and P is a finite set of productions such that each production
has the form A → x, where A ∈ V −T , x ∈ V ∗. Let lhs(A → x) and rhs(A → x) denote A and
x, respectively. If A → x ∈ P, u = rAs, and v = rxs, where r,s ∈V ∗, then G makes a derivation
step from u to v according to A → x, symbolically written as u ⇒ v [A → x] in G or, simply, u ⇒
v. Let ⇒+ and ⇒∗ denote the transitive closure of ⇒ and the transitive-reflexive closure of ⇒,
respectively. The language of G is denoted by L(G) and defined as L(G) = {x : x ∈ T ∗,S ⇒∗

x}.

3 DEFINITIONS AND EXAMPLES

A scattered context grammar (see [1, 2, 3, 4, 6, 8, 9]), a SCG for short, is a quadruple, G =
(V,T,P,S), where V is an alphabet, T ⊆ V , S ∈ V − T , and P is a finite set of productions
such that each production has the form (A1, . . . ,An) → (x1, . . . ,xn), for some n ≥ 1, where
Ai ∈V −T , xi ∈V ∗, for 1 ≤ i ≤ n. If every production (A1, . . . ,An) → (x1, . . . ,xn) ∈ P satisfies
xi ∈ V + for all 1 ≤ i ≤ n, G is a propagating scattered context grammar, a PSCG for short.
If (A1, . . . ,An) → (x1, . . . ,xn) ∈ P, u = u1A1u2 . . .unAnun+1, and v = u1x1u2 . . .unxnun+1, where
ui ∈ V ∗, 1 ≤ i ≤ n, then G makes a derivation step from u to v according to (A1, . . . ,An) →
(x1, . . . ,xn), symbolically written as u ⇒ v [(A1, . . . ,An) → (x1, . . . ,xn)] in G or, simply, u ⇒ v.
Set π((A1, . . . ,An)→ (x1, . . . ,xn)) = |A1 . . .An|= n and ρ((A1, . . . ,An)→ (x1, . . . ,xn)) = {A1 →
x1, . . . ,An → xn}. Let ⇒+ and⇒∗ denote the transitive closure of⇒ and the transitive-reflexive
closure of ⇒, respectively. The language of G is denoted by L(G) and defined as L(G) = {x :
x ∈ T ∗,S ⇒∗ x}.
The core grammar underlying a scattered context grammar, G = (V,T,P,S), is denoted by
core(G) and defined as the context-free grammar core(G) = (V,T,cf(P),S) with cf(P) = {B →
y : B → y ∈ ρ(p) for some p ∈ P}. Let v = u1A1u2A2 . . .unAnun+1 ⇒ u1x1u2x2 . . .unxnun+1 =
w [(A1, . . . ,An) → (x1, . . . ,xn)] in G. The partial m-step context-free simulation of this step by
core(G) is denoted by pcfm(v ⇒ w) and defined as core(G)′s m-step derivation of the form
u1A1u2A2 . . .unAnun+1 ⇒ u1x1u2A2 . . .unAnun+1 ⇒ . . . ⇒ u1x1u2x2 . . .umxmum+1Am+1 . . .unAn
un+1 where m≤ n. The context-free simulation is a special case of the partial m-step context-free
simulation for m = n, denoted by cf(v ⇒ w). Let v = v1 ⇒∗ vn = w be a derivation in G of the
form v1 ⇒ v2 ⇒ v3 ⇒ . . . ⇒ vn. The context-free simulation of v ⇒∗ w by core(G) is denoted
as cf(v ⇒∗ w) and defined as v1 ⇒∗ v2 ⇒∗ v3 ⇒∗ . . . ⇒∗ vn such that for all 1 ≤ i ≤ n− 1,
vi ⇒∗ vi+1 in core(G) is the context-free simulation of vi ⇒ vi+1 in G. Let S ⇒∗ x in G be of
the form S ⇒∗ uAv ⇒∗ x. Let cf(S ⇒∗ x) in core(G) be the context-free simulation of S ⇒∗

x in G. Let t be the derivation tree corresponding to S ⇒∗ x in core(G) (regarding derivation
trees and related notions, we use the terminology of [5]). Consider a subtree rooted at A in t. If
the frontier of this subtree is ε, then G erases A in S ⇒∗ uAv ⇒∗ x, symbolically written as Ǎ,
and if this frontier differs from ε, then G does not erase A during this derivation, symbolically
written as Â. If w = Â1 . . . Ân or w = Ǎ1 . . . Ǎn, we write ŵ or w̌, respectively. Let G = (V,T,P,S)
be a SCG , and let k ≥ 0. G erases its nonterminals in a k-limited way if for every y ∈ L(G)
there exists a derivation S ⇒∗ y such that every sentential form x of the derivation satisfies the
following two properties:

1. Every x = uAvBw, Â, B̂, v̌, satisfies |v| ≤ k.

2. Every x = uAw, Â, satisfies: if ǔ or w̌, then |u| ≤ k or |w| ≤ k, respectively.

Examples

1. Observe that the grammar G1 = ({S,A,B,C,A′,B′,C′,a,b,c},{a,b,c},{(S) → (ABC),
(A) → (aAA′),(B) → (bBB′),(C) → (cCC′),(A,B,C) → (y,y,y),(A′,B′,C′) → (y,y,y)},
S) generates the language L(G1) = {anyn+1bnyn+1cnyn+1 : n ≥ 0}. Therefore, there does
not exist any restricted homomorphism h such that h(L(G1)) = {anbncn : n ≥ 0}. How-
ever, as demonstrated by the following example, there exists a scattered context grammar
which erases its nonterminals in a k-limited way.

2. Observe that the grammar G2 = ({S,A,B,C,A′,B′,C′,a,b,c},{a,b,c},{(S) → (ABC),
(A) → (aAA′),(B) → (bBB′),(C) → (cCC′),(A,B,C) → (ε,ε,ε),(A′,B′,C′) → (ε,ε,ε)},
S) generates the language L(G2) = {anbncn : n ≥ 0}. As the derivation of any string
aa . . .aabb . . .bbcc . . .cc ∈ L(G2) may be of the form

S ⇒ ABC ⇒∗ aAA′bBB′cCC′ ⇒ aAbBcC
⇒∗ aaAA′bbBB′ccCC′ ⇒ aaAbbBccC
⇒∗ aa . . .aaAA′bb . . .bbBB′cc . . .ccCC′

⇒ aa . . .aaAbb . . .bbBcc . . .ccC ⇒ aa . . .aabb . . .bbcc . . .cc,

the grammar erases its nonterminals in a 2-limited way.

3. Consider the grammar G3 = ({S,A,B,A′,B′,a,b,c},{a,b,c},{(S)→ (AA),(A,A)→ (aA,
A′A),(A,A)→ (B,B),(B,B)→ (bBc,B′B),(B,B)→ (ε,ε),(A′,B′)→ (ε,ε)},S). Observe
that L(G3) = L(G2). However, because the first part of every derivation has the form

S ⇒ AA ⇒ aAA′A ⇒ aaAA′A′A ⇒∗ aa . . .aAA′A′ . . .A′A

and all A′’s are deleted in the second part of the derivation, there does not exist any k such
that G3 erases its nonterminals in a k-limited way.

4 RESULTS

The main result of this paper follows next.

Theorem 1. For every SCG, G, which erases its nonterminals in a k-limited way there exists a
PSCG, Ḡ, such that L(G) = L(Ḡ).

Proof. Let G = (V,T,P,S) be a SCG which erases its nonterminals in a k-limited way. For every
p = (A1, . . . ,Ai, . . . ,An) → (x1, . . . ,xi, . . . ,xn) ∈ P let bp, ic denote Ai → xi for all 1 ≤ i ≤ n.
Let Ψ = {bp, ic : p ∈ P,1 ≤ i ≤ π(p)} and Ψ′ = {bp, ic′ : bp, ic ∈ Ψ}. Set N̄1 = {〈x〉 : x ∈
(V −T)∗∪ (V −T)∗T (V −T)∗, |x| ≤ 2k +1}. For every 〈x〉 ∈ N̄1 and bp, ic ∈ Ψ, define

lhs-replace(〈x〉,bp, ic) = {〈x1bp, icx2〉 : x1,x2 ∈V ∗,x1 lhs(bp, ic)x2 = x}.

Set N̄2 = {〈x〉 : 〈x〉 = lhs-replace(〈y〉,bp, ic),〈y〉 ∈ N̄1,bp, ic ∈ Ψ}. For every 〈x〉 ∈ N̄1 and
bp, ic′ ∈ Ψ′, define

insert(〈x〉,bp, ic′) = {〈x1bp, ic′x2〉 : x1,x2 ∈V ∗,x1x2 = x}.

Set N̄′
2 = {〈x〉 : 〈x〉= insert(〈y〉,bp, ic′),〈y〉 ∈ N̄1,bp, ic′ ∈Ψ′}. For every x = 〈x1〉〈x2〉 . . .〈xn〉 ∈

(N̄1∪ N̄2∪ N̄′
2)
∗ for some n ≥ 1, define

join(x) = x1x2 . . .xn.

For every x ∈ N̄1∪ N̄2∪ N̄′
2, define

split(x) = {y : x = join(y)}.

Set V̄ = T ∪ N̄1∪ N̄2∪ N̄′
2∪{S̄}. Define the PSCG ,

Ḡ = (V̄ ,T, P̄, S̄),

with P̄ constructed as follows:

1. For every p = (S) → (x) ∈ P, add
(S̄) → (〈bp,1c〉) to P̄;

2. For every 〈x〉 ∈ N̄1, every X ∈ insert(〈x〉,bp,nc′), where p ∈ P, π(p) = n, every 〈y〉 ∈ N̄1,
and every Y ∈ lhs-replace(〈y〉,bq,1c), where q ∈ P, add

(a) (X ,〈y〉) → (〈x〉,Y), and

(b) (〈y〉,X) → (Y,〈x〉) to P̄;

(c) if 〈x〉= 〈y〉, add
(X) → (Y) to P̄;

(d) (X) → (〈x〉) to P̄;

3. For every 〈x〉 ∈ N̄1, every X ∈ insert(〈x〉,bp, ic′), where p ∈ P, i < π(p), every 〈y〉 ∈ N̄1,
and every Y ∈ lhs-replace(〈y〉,bp, i+1c), where q ∈ P, add

(a) (X ,〈y〉) → (〈x〉,Y) to P̄;

(b) if 〈x〉= 〈y〉 and pos(X , l) = bp, ic′, pos(Y,m) = bp, i+1c′, l < m, add
(X) → (Y) to P̄;

4. For every 〈x1bp, icx2〉 ∈ lhs-replace(〈x〉,bp, ic), 〈x〉 ∈ N̄1, bp, ic ∈ Ψ, x1,x2 ∈ V ∗, and
every Y ∈ split(x1 rhs(bp, ic)bp, ic′x2), add
(〈x1bp, icx2〉) → (Y) to P̄;

5. For every a ∈ T , add
(〈a〉) → (a) to P̄.

Denote the set of productions introduced in step i of the construction by iP, for 1 ≤ i ≤ 5.

Basic Idea Ḡ simulates G by using nonterminals of the form 〈. . .〉. In each nonterminal of
this form, during every simulated derivation step, Ḡ records a substring of the corresponding
current sentential form of G.
The rule constructed in (1) only initializes the simulation process. By rules introduced in (2)
through (4), Ḡ simulates the application of a scattered context rule p from P in a left-to-right
way. In greater detail, by using a rule of (2), Ḡ nondeterministically selects a scattered context
rule p from P. Suppose that p consists of context-free rules r1, . . . ,ri−1,ri, . . . ,rn. By using
rules of (3) and (4), Ḡ simulates the application of r1 through rn one by one. To explain this in
greater detail, suppose that Ḡ has just completed the simulation of ri−1. Then, to the right of this
simulation, Ḡ selects lhs(ri) by using a rule of (3). That is, this selection is made inside of Ḡ’s
nonterminal in which the simulation of ri−1 has been performed or in one of the nonterminals
appearing to the right of this nonterminal. After this selection, by using a rule of (4), Ḡ performs
the replacement of the selected symbol lhs(ri) with rhs(ri).
If a terminal occurs inside of a nonterminal of Ḡ, then a rule of (5) allows Ḡ to change this
nonterminal to the terminal string contained in it.

Formal Proof Due to the requirements imposed on the length of this paper, the formal proof
is omitted. �

ACKNOWLEDGEMENTS

This work was supported by GAČR grant 102/05/H050 and FRVŠ grant FR762/2007/G1.

REFERENCES

[1] Fernau, H.: Scattered context grammars with regulation, Annals of Bucharest Univ., Math.-
Informatics Series, 45(1), 41–49, 1996

[2] Gonczarowski, J., Warmuth, M.: Scattered versus context-sensitive rewriting, Acta Infor-
matica, 27, 81–95, 1989

[3] Greibach, S., Hopcroft, J.: Scattered context grammars, Journal of Computer and System
Sciences, 3, 233–247, 1969

[4] Meduna, A.: A trivial method of characterizing the family of recursively enumerable lan-
guages by scattered context grammars, EATCS Bulletin, 56, 104–106, 1995

[5] Meduna, A.: Automata and Languages: Theory and Applications, Springer, London, 2000

[6] Meduna, A., Techet, J.: Generation of sentences with their parses: the case of propagating
scattered context grammars, Acta Cybernetica, 17, 11–20, 2005

[7] Salomaa, A.: Formal Languages, Academic Press, London, 1973

[8] Vaszil, G.: On the descriptional complexity of some rewriting mechanisms regulated by
context conditions, Theoretical Computer Science, 330, 361–373, 2005

[9] Virkkunen, V.: On scattered context grammars, Acta Universitatis Ouluensis, Series A,
Mathematica 6, 75–82, 1973

