MULTIAGENT SYSTEM FOR SEARCHING IN FOAF
NETWORKS

Zderek MAZAL, Doctoral Degree Programme (1)
Dept. of Intelligent Systems, FIT, BUT
E-mail: mazal@fit.vutbr.cz

Supervised by: Doc. FrantiSek Zflo

ABSTRACT

FOAF —the Friend of a Friend project is currently one of theshspread applications
of W3C’s Semantic Web. FOAF is about creating machine—readaiepages describ-
ing people, the links between them and the things they ceeatelo. Most of the software
written for FOAF is concerned with visualisation of FOAF §Jeespecially the social net-
works they include. Exploring such networks can be fun, h@wvsearching them for some
specific information is much more useful. The problem withrsking the whole network
is that it requires large storage capacity, connectivity ®te are addressing this problem
by proposing a multiagent system based on peer—to—peer goioation for searching in
FOAF networks.

1 INTRODUCTION

As most of us have already experienced, searching the Wadé Web (WWW) is
not an easy task. The reason for this is that the WWW consisthof@ number of pages,
which are from the searching point of view more or less anruogired text with very
little meta information. This has lead the World Wide Web Gotism (W3C) to starting
of a new project — the Semantic Web (SW) [9]. The goal of SW isréate a framework
for sharing well structured data between applications enkernet. SW is based mainly
on Resource Description Framework (RDF) [6] — RDF defines a datiehior describing
resources using triples of form (subject—predicate—apjéor integration of this concept
in current WWW, existing technologies are used — namely Umif&esource Identifier
(URI) and XML serialisation. For defining relations betwe@sources and properties,
languages for creating vocabularies are used; most commeoRBF Schema and Web
Ontology Language (OWL). These standards (technically W3&i®mmendations) do
not describe vocabularies for any particular domain, justramon framework for creating
them.

The applications of the SW are not so wide spread yet, howR&S (RDF Site
Summary, Rich Site Summary or Really Simple Syndication —fathese names are used
in literature) and Friend of a Friend (FOAF) [2] have alredaiynd their way to the public
audience. We will deal with FOAF in the rest of the article.

FOAF is technically an RDF vocabulary. It defines classes angegsties for de-
scribing people, their interests, projects, chat accoumblogs and what is most impor-
tant, provides ways to create links to FOAF files of people tkeow. The main idea of
the project is that if people publish their personal infotimain FOAF files, together with
links to their friends’ FOAF files, machines will be able t@aid these files and present in-
teresting facts to the user. Most of the programs writter-fOAF like [10] or [4] however
provide only a simple visualisation of the contents of filsaine URL presented by user,
allowing the user to manually navigate in the graph, the ipdggs of searching are usu-
ally limited — one example of a bot answering questions ali®Gtusers is available at [7].
The reason for this is that crawling and storing the contéth@files requires significant
connectivity and disk space. There are two possibilities tladdress this problem. One
can either create a big Google—like server crawling the wedb meer—to—peer network of
hosts (agents) where every agent has a limited storageittapad connectivity, but is
able to communicate with other hosts. The results of uselegiare then achieved mainly
by communication and cooperation. We have chosen the seqgmach and we will
describe the architecture of the multi agent system in teieafethe article.

The multi agent paradigm was already described elsewhgead@introduction can
be found at [8]), we expect the reader to be familiar at ledts$t the basic concepts.

2 SYSTEM ARCHITECTURE

The overall system architecture can be seen in figure 1. Egeaiit g@onsists of three
main layers; each layer has a specific purpose.

The top layer is used for accessing the actual content of\i¢.8. the FOAF files),
crawling the pages and (optionally) storing the results local database. We are using
JENA [5] SW framework for implementation of major part ofghayer’s functions. More
details about JENA are presented further in the article.

The middle layer has two main tasks — it provides user intertend carries out the
reasoning of the agent, i.e. controls and assigns taske tophand bottom layer. We were
considering two possibilities for implementation of tragér: (1) use some available Belief
Desire Intention (BDI) system or (2) create a reactive agéetare planning to implement
both, so we can compare the approaches; in the first protetgpare using the reactive
rules. These two top layers can run as a standalone apphaatitting the agent commu-
nication.

Finally, the bottom layer is responsible for communicatwith other agents. This
layer is being implemented using the JADE [1] middlewarejolwlprovides convenient
methods for agent communication and management. Somestitey aspects of each
individual layers together with more detailed descripddENA and JADE are presented
in the next section.

SEMANTIC WEB

=T
Ottt

JENA RDF JENA RDF
—_— ——
INTERFACE INTERFACE
local DB ! + PERSISENT local DB d + PERSISENT
STORAGE S_TCEA_GE_ o
REASONING+ = | ceceeaaaa- REASONING +

USER INTERFACE

USER INTERFACE

JADE - AGENT JADE - AGENT
COMMUNICATION COMMUNICATION
INTERFACE INTERFACE
ASK:
Directory > Agent
- REPLY: ...
Faciliator REPLY:... Management
System
JADE RUNTIME ENVIRONMENT

Figure 1: Overall system architecture of the multiagentesysor searching in FOAF files

3 AGENT LAYERS AND FURTHER DETAILS

3.1 TOP LAYER —JENA

As we already mentioned, the main purpose of the top layerawlng the FOAF
files on the WWW and storing the triples in a local database. Mb#gte required oper-
ations are already implemented in JENA [5], an open souaradwork for creating SW
applications in Java, which is developed in HP laboratori#sNA provides a program-
matic environment for handling RDF, RDFS and OWL, a rule-basfténce engine, im-
plementation of a SPARQL query language and means for sttretyiples in a database.

JENA doesn’t have any special support for FOAF, so our maingat the top layer
was on creating algorithms for extraction and searchingesirdd properties from the
graphs, because several different constructions for exprg the same fact are allowed
in FOAF (for example a person can be described as a membeass Blerson or a more
general class Agent). What's more, FOAF can be mixed withrd®id- dictionaries, such
as Dublin Core (DC), RSS and others. Extracted links to other F@lAs are passed to
the middle layer, which decides what files will be crawledtnex

3.2 MIDDLE LAYER — USER INTERFACE AND REASONING

The user presents its request to the agent via a search fohm.fofm includes
fields for all properties that can be used for specifying d@ag constraints — currently
only a basic subset of properties defined by FOAF (URI, nanaiknaime, e-mail, e-malil
SHAL hashcode etc.). The user can also choose whether he teaimd some specific
information about the person (like e-mail address) or ailable data should be retrieved.

After the user submits the form a query for local data is pregpaand executed.
Results of this query (if there are any) are presented to #re Asthe same time the request
to other agents is also sent — the protocol of this commupit# discussed further in the
article. The replies of the agents don't include directlyftitiples replying to the query, only
links to FOAF files, which should be relevant. These files hemtprocessed by the local
agent (user has a complete control over this process andaampcessing of selected
files).

While being idle, the agent crawls the links extracted fromAFQiles that were
either entered by user or processed when executing somg qines process can again be
controlled by the user — globally via preferences (by gdmetas on how much crawling
should be done etc.) and also a list of the files that are sédetiube crawled next can be
updated.

In the prototype implementation we use the reactive agematdigm, i.e. the agent
responds with an action according to some predefined rulesves an event occurs. How-
ever our plan is to use a BDI reasoning in the next version. Riegato the software used,
JADEX — a BDI extension to JADE seems to be natural choice.

3.3 BOTTOM LAYER - JADE

The bottom layer is responsible for communication amongegeWe implement
this layer using JADE [1] (Java Agent DEvelopment FrameWwodRDE is an open source
middleware for creating multi agent systems communicatingpeer—to—peer basis. It is
written in Java and is compatible with relevant standardtw@foundation for Intelligent
Physical Agents (FIPA), which ensures very good interayialidgy. JADE provides conve-
nient classes for wrapping the higher layers into a reaetjent body, a distributed runtime
environment where the agents “live”, and some useful tamglébugging of the system.
The JADE environment provides also facilities for dynanrieation of agent communities
using a system of Directory Facilitor agents (yellow pagasises).

The style of ontology support implementation in JADE (usillaya classes and ob-
ject) is not suitable for use with RDF and therefore the botlayer treats the content of
the messages as plain text and only passes it to the midélevdyere it is processed.

JADE provides a framework for common agent communicati@mados defined by
FIPA. The scenario currently used in our system is FIPA—Rsijwee also plan to include
FIPA—Subscribe for implementation of long term queries. adsontent language for the
messages, the RDF is used — FIPA defines such use of RDF in thcgten [3], which
however still has the experimental status. The requestagessnclude the specification
of the person queried by user; it doesn't include the actuahyg (from various reasons,
one of them is security). The reply includes a list of FOAFsfilehich should contain the
gueried information wrapped in RDF.

4 CONCLUSION

We described the architecture of a multi agent system facckeay in FOAF net-
works. The prototype of the system is currently being im@atad. We have done some
testing of a standalone agent (the top two layers), howéeeoverall performance of the
system very much depends on the number of agents in the sgsigthe communication
among them. This will be the main subject of our future work are hope to be able to
use the results and experiences gained in a more general glagipn in the future.

ACKNOWLEDGMENTS

This article is a part of research supported by Czech Sciemaedation grant GACR
102/05/H050.

REFERENCES

[1] Bellifemine F., Poggi A., Rimassa G.: JADE — a FIPA—compliagent framework.
CSELT internal technical report. Part of this report has baso published in Pro-
ceedings of PAAM'99, London, April 1999, pp.97-108.

[2] Brickley, D.: The foaf project [online]. 2000 [cit. 20083-01]. Available from WWW.
<http://www.foaf-project.org>.

[3] Foundation for Intelligent Physical Agents: FIPA RDF Cemnt Lan-
guage Specification [online]. 2001 [cit. 2006-03-01]. Asble from WWW.:
<http://www.fipa.org/specs/fipa00011/XC00011B.html>.

[4] Frederiksen, M.: FoaF Explorer [online]. 2002 [cit. ZB03-01]. Available from
WWW: <http://xml.mfd-consult.dk/foaf/explorer/>.

[5] Hewlett-Packard Development Company LP: Jena — A Semaweb Frame-
work for Java [online]. [c2003—-2005] [cit. 2006-03-01]. &lable from WWW.
<http://jena.sourceforge.net/>.

[6] Manola, F., Miller, E.: RDF Primer [online]. 2004 [cit. PB-03-01]. Available from
WWW: <http://www.w3.0rg/TR/2004/REC-rdf-primer-20040210/>

[7] Useful Information Company: FOAFBot: IRC Community Support
Agent [online]. ¢2000-2005 [cit. 2006-03-01]. Availableroin WWW:
<http://usefulinc.com/foaf/foafbot>.

[8] Wolldridge, M.: An Introduction to MultiAgent SystemsViley, Chichester 2002.

[9] World Wide Web Consortium: Semantic Web [online]. 20Qt.[2006-03-01]. Avail-
able from WWW: <http://www.w3.0rg/2001/sw/>.

[10] Foafnaut [online]. [2003] [cit. 2006-03-01]. Availb from WWW:
<http://www.foafnaut.org/>.

