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ABSTRACT

This paper presents the numerical approach andtgdsu a piezoceramic sensor for
acoustic emission sensing. A method for the amalgkipiezoelectric media based on finite
element calculations is presented. The method @ieap to the transient analysis of
piezoelectric sensor.

1 INTRODUCTION

Robust numerical simulations of advanced structwiisresult in the development of
designs that perform better than their passive teoparts while costing less. In order to
optimize the design of complicated structures #rat subjected to critical loading, dynamic
simulation is necessary. The finite-element metisocery attractive since it can be applied to
any geometry for any set of material properties &atiing conditions as long as the
appropriate constitutive relationships and equitor conditions are met. Since the method is
not restricted by size, one can use the so catlethZeature in finite-element meshing to use
different-size elements to describe device. Margeaechers have used the finite-element
method for modeling piezoelectric sensors and &otsiasince the 1970s. The first finite
element formulation was proposed by Allik and Huglig]. A comprehensive paper was
written by Lerch [2] on the simulation of piezodigr devices that included time domain

modeling. The numerical approach presented maybed in CAE models for nondestructive
testing sensors.

Fig. 1: Piezoceramic sensor in detail (1. membrane, 2.queamic segment,
3. insulated ring, 4. case base, 5. damping matesiacase cover )



2 FORMULATION OF PIEZOELECTRIC ELEMENTS

Piezoelectric materials are anisotropic and thstieldield in such materials is coupled
with the electric field. Finite element equations piezoelectric materials have already been
formulated in many papers. A finite-element forntiola is presented for modeling the
dynamic response of piezoelectric ceramic sensors.

The base part of sensor is sensing segment. Incasg the object of study is a
piezoceramic disc, see fig. 2. The finite elememiations (motion equations) used in the
calculation of dynamic response are given by [3]
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where {U} is a vector of nodal displacements,{] is mechanical stiffness matrix,
[Kug] is piezoelectric coupling matrixKfo] is dielectric stiffness matrixM] is mass matrix,
{F} is mechanical forces and @} is electrical charges. Damping matrix is
definec{D]:a[M]+[>’[Kuu], where a and g are called Rayleigh coefficients. Damping
constantsy andp are determined empirically by examining criticangping at two different

frequencies. The finite element (FE) equationsteaesformed to H-form [3, 4], where the
potential in the nodes of the elements are condeastof the FE equations, and instead the
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The basic concept of matrix condensation is basedGaussian elimination solution of
equations for unknowns. After assembling all eleimeatrices, the system dynamic equation

IS written as
[MKu}+ DU+ [Hfu} ={F+}, (3)
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where

[Ho]=Hu]=[Ho R[]
[F *] = [F] - [H uw][H w]_l{Q}

and electrical voltage can be recovered by thdioalship

=[Ha [} -[HE L)),

3 TIME-HISTORY ANALYSIS: A DIRECT INTEGRATION

In direct integration the equations of motion (2)e adirectly integrated using
a step-by-step numerical procedure without tramsétion of the equations to a different
form. The step-by-step integration procedures g®wan approximate solution atdiscrete
time intervals0, At, 24t ... t, t+4t, T, where T is duration of the input motion or laagland
At = T/n. Many numerical integration procedures have beeveldped. Direct integration
methods are generally classified as either expdiciimplicit. The basic concept common to
most explicit methods is to write the equationsrmition for the beginning of the time step,



approximate the initial velocity and acceleratiennts by finite-difference expressions, and
then solve for response at the end of time stefs Way the response values calculated in
each step depend only on quantities obtained impteeeding step. Therefore, the numerical
process proceeds directly from one step to nexpli€ik methods are very convenient, but
they are only conditionally stable and will “blowp’uif time step is not sufficiently small. In
an implicit method the expressions for new values-dt use equilibrium equations &tAt,
and thus include one or more values pertainingab $ame step.

3.1 CENTRAL DIFFERNECE METHOD

In our calculation scheme central difference (eplimethod was used. The reason
why is equal time step, because the data of simuktare then used for FFT computation.
This method is a very simple explicit method thaes the following finite-difference
expressions for approximation of the initial vetgand acceleration terms

{Ut} = [{ut—At} - Z{Ut} +{ut+At }]/At2
fu}=[~{u a}+{u..lr(2at)

The displacement solution for time stepft (i.e. {u.4}) is obtained by considering the
equations of motion (3) at time step

(MKU }+[DRu f+[H<fu } ={F ) (5)

Substituting (4) into (5), leads to

(Atzl M+ _[D]}{ Uia}= {t*}—([H*]_mz[ ]}{ u}- (mz[ ]——[D]j{ U} (

2At

(4)

Concerning stability, the central difference meti®@donditionally stable: the time step
value must be smaller than a critical one. Fordim@oblems, this critical time stefb. is

AtC<2/ max’ (7)

wherewmaxis the highest natural frequency, bounded by theimam frequency of the
individual finite elements.

el BOUNDARY COMDITIONS 5 S0 _ R

u
0.008
Do .
0.004

z [m]

0.004 -

z [m]

0.002

0.002 -

COCOCHCEDCHED

-0.002 1 1 1 I 1 L
-0.002 1 L ; : : ! : 0 2 4 B g 10 12

gl 107

At wio®

Fig. 2: Boundary condition and loading of model

4 NUMERICAL SOLUTIONSAND RESULTS

Algorithm was developed in MATLAB. For simplicitghe problem is defined as two
dimensional case, axisymmetry task. The objecttodys was piezoceramic disc (material
PZT-27; Ferroperm-piezo) in sensor. A schematicugson of the sensor is presented in



figure 1. For calculation scheme the linear quadelements were used. The accuracy of the
transient solution including a piezoelectric senalso increases with decreasing time step.
The smaller the time step, however, the largemilmaber of iterations required for solution.
Therefore, the time step chosen should be smaligindor an accurate solution but large

enough to minimize iteration. At least ten timepstger period must be taken for accuracy.
The time step used is 7x18ec.
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Fig. 3: Types of load history function used in the numémnocadels.

The boundary condition and loading is shown in 2ig.Three types of loading
(see fig. 3. ) were studied: step function, singakise and burst signal.
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Fig. 4. Piezoceramic sensor response for unit step exaitati
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Fig. 5: Piezoceramic sensor response for simply pulseadiarit



In figures 4-6, the sensor voltage responses atéeglfor unit step and simply pulse
excitation and a burst pulse, respectively. Irttakke cases, an initial transient response phase
can be noticed, and then damped vibration at thearalafrequency of the system and
approach to the static steady state value.
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Fig. 6: Piezoceramic sensor response for simply pulseagiarit

5 CONCLUSION

This paper is concerned with the finite-element atiogy of the dynamic response of
piezoceramic sensor. Reduction scheme (3) was geplo condense the elastodynamic and
electric degrees of freedom. The time-history respowas calculated by a direct integration
algorithm (central difference method) to accommedaiezoelectric constitutive equations
[1]. To numerically simulate the dynamic respon§eensor the example of a prototype of
acoustic emission sensor was used.

The transient analysis is important to knowledgdrefuency characteristic of sensor.
So the In order to verify the proposed analysisitdielement results was compared with
known analytical results for various dynamic loatlse agreement is good. The influence of
dynamic loading on the transient response of sesstgmonstrated. The results indicate that
a system would generally oscillate during excitatiith varying amplitudes, and at a
frequency that corresponds to the natural frequaricthe system, but voltage oscillations
would gradually reach a steady state value beaafusteuctural damping.
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