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ABSTRACT

A new construction of the fundamental solution system of the system of homogeneous lin-
ear difference equations with constant coefficients is presented in this article. The method
of the generalized eigenvectors is used and the difference between the construction of
the fundamental solution systems for the difference equations and differential equations
is shown.

1 INTRODUCTION

Consider the system of linear difference equations with constant coefficients

x(n+1) = Ax(n), (1)

where A is a real square matrix of the m-th order and x = [x1,x2, . . . ,xm]T is the desired
vector of the solution, which depends on the variable n, it means x = x(n), n ≥ n0, n0 ∈ Z.
Assume that the non-zero solution x(n) 6≡ 0 of the system (1) has the form

x(n) = vλ
n, (2)

where λ is a suitable complex number and v is an eligible constant vector. By substituting
(2) into the system (1) we get

vλ
n+1 = Avλ

n

and after the modification

Avλ
n−λvλ

n = (A−λI)vλ
n = 0,

where I is the m×m unit matrix and 0 is the zero vector. From the last relation (after
dividing by λn) we get

(A−λI)v = 0. (3)



The system (3) does not already contain the independent variable n, it is the system of
linear algebraic equations with respect to the components of the vector v. It will have the
non-zero solution v if and only if

det(A−λI) = 0. (4)

The equation (4) is called the characteristic equation. The roots of characteristic equation
are called the eigenvalues of the matrix A. If λ = λ∗ is the eigenvalue of the matrix A and
the vector v = v∗ is the non-zero solution of the system

(A−λ
∗I)v = 0,

then the vector v∗ is called the eigenvector of the matrix A. The vector function

x(n) = v∗(λ∗)n

is one of the solutions of the system (1).

2 THE CASE OF THE DIFFERENT ROOTS OF THE CHARACTERISTIC EQUA-
TION

In case when the characteristic equation (4) has m respectively various real roots

λ1,λ2, . . . ,λm

and m corresponding (non-zero) eigenvectors

v1,v2, . . . ,vm,

the construction of the general solution of the system (1) is simple and the system of the
vector functions

v1λ
n
1,v2λ

n
2, . . . ,vmλ

n
m

forms the fundamental solution system of the system (1). One may express the general
solution of this system in the form

x(n) = K1v1λ
n
1 +K2v2λ

n
2 + . . . +Kmvmλ

n
m,

where K1,K2, . . . ,Km are arbitrary constants.

3 THE MULTIPLE ROOTS OF THE CHARACTERISTIC EQUATION

The construction of the fundamental solution system is more complicated in the case, when
the roots of the characteristic equation are multiple. In this case the eigenvalue λ with the
multiplicity s generates s corresponding linear independent solutions, s ∈ {2,3, . . . ,m}.
One of them has the form we supposed, it means the form (2).
If the eigenvalue is a complex number, λ = α + jβ, where j is the imaginary unit and



α,β ∈ R, the complex conjugate number λ̄ = α− jβ will be the eigenvalue with the same
multiplicity too. If the complex solution x = x(n) of the system (1) exists, two real solutions
x1(n), x2(n) can be obtained as

x1(n) = Re x(n) = Re [vλn],
x2(n) = Im x(n) = Im [vλn],

where Re means the real part and Im the imaginary part of the complex solution x(n).

3.1 THE CONTINUOUS SYSTEM - THE SYSTEM OF DIFFERENTIAL EQUA-
TIONS

The system of differential equations presents the analogy of our problem. Therefore, before
the explanation of the case considered in the case of difference system, we describe shortly
the similar situation for the ordinary differential systems. We consider the system of linear
differential equations with constant coefficients

y′(t) = Ay(t)

and suppose that the corresponding characteristic equation has the root λ with the multi-
plicity s. Assume that the rank (A−λI) = m−1. Then the vector functions

v1eλt , (v1t +v2)eλt , . . . ,

(
v1 ·

ts−1

(s−1)!
+v2 ·

ts−2

(s−2)!
+ . . . +vs−1t +vs

)
eλt ,

where v1,v2, . . . ,vs are non-zero vectors satisfying the systems (see [2])

(A−λI)v1 = 0, (5)
(A−λI)v2 = v1, (6)

...
(A−λI)vs = vs−1, (7)

creates the fundamental solution system.

3.2 THE DISCRETE SYSTEM

The construction of the vectors v1, v2, . . ., vs in the case of the system of difference equa-
tions is different from the construction of the vectors in the continuous case. These vectors
cannot be found as the non-zero solutions of the systems (5)–(7) and it is necessary to use
different systems.
Let us now focus our attention on the system (1). Recall that the relation

(A−λI)v1 = 0

holds, where v1 is the eigenvector of the matrix A corresponding to the eigenvalue λ. The
vector

x1(n) = v1λ
n



is the solution of the system (1). Assume that the rank (A−λI) = m−1 and the multiplicity
of the root s = 2. Let us define the vector

x2(n) = (v1n+v2)λn, (8)

where v2 is a suitable non-zero vector. By substituting the vector (8) into the system (1)
we get [

v1(n+1)+v2

]
λ

n+1 = A(v1n+v2)λn. (9)

The equation (9) can be divided by the term λn. Comparing the coefficients of the identical
functional terms we obtain

n1 : v1λ = Av1,
n0 : (v1 +v2)λ = Av2.

After the simplification we have two systems

(A−λI)v1 = 0, (10)
(A−λI)v2 = λv1, (11)

which determine the relations between the vectors v1 and v2. Thus, if the matrix A has the
eigenvalue λ with the multiplicity s = 2, two linear independent solutions are

x1(n) = v1λn,
x2(n) = (v1n+v2)λn.

Next, we assume that the multiplicity of the root s = 3. Let us define the vector

x3(n) =
(

v1
n2

2
+v2n+v3

)
λ

n, (12)

where v3 is a suitable non-zero vector. If we substitute the vector (12) into the system (1),
we get [

v1
(n+1)2

2
+v2(n+1)+v3

]
λ

n+1 = A
(

v1
n2

2
+v2n+v3

)
λ

n. (13)

After the division of the equation (13) by the term λn and comparision the coefficients of
the identical functional terms we obtain

n2 : 1
2v1λ = 1

2Av1,

n1 : (v1 +v2)λ = Av2,

n0 :
(1

2v1 +v2 +v3
)

λ = Av3.

If we simplify these equations, we obtain three systems

(A−λI)v1 = 0, (14)
(A−λI)v2 = λv1, (15)

(A−λI)v3 = λ

(
1
2

v1 +v2

)
, (16)



which determine the relations between the vectors v1, v2 and v3. If the matrix A has the
eigenvalue λ with the multiplicity s = 3, three linear independent solutions are

x1(n) = v1λn,
x2(n) = (v1n+v2)λn,

x3(n) =
(1

2v1n2 +v2n+v3
)

λn.

It is obvious that the systems (10), (11), in case of the root λ with the multiplicity s = 2, are
included in the systems (14)–(16), where the root λ is triple. According to this conclusion,
one may construct the solution corresponding to the root λ with the multiplicity s. Then, if
v1,v2, . . . ,vs are non-zero vectors satisfying the systems

(A−λI)v1 = 0, (17)
(A−λI)v2 = λv1, (18)

(A−λI)v3 = λ

(
1
2

v1 +v2

)
, (19)

...

(A−λI)vs = λ

(
v1

(s−1)!
+

v2

(s−2)!
+ . . . +

vs−2

2!
+vs−1

)
, (20)

the vector functions

v1λ
n, (v1n+v2)λn, . . . ,

(
v1 ·

ns−1

(s−1)!
+v2 ·

ns−2

(s−2)!
+ . . . +vs−1n+vs

)
λ

n,

creates the fundamental solution system of (1).

4 CONCLUSION

The permanent expansion and usage of the discrete systems in technique force us to look
for the new ways, how to describe these systems mathematically. The way with the aid of
difference equations is often used, which represents the analogy of differential equations
with the continuous systems in a certain way. In the contribution, a new approach has been
developed for the construction of the fundamental solution system of the discrete equation
system with the aid of generalized discrete eigenvectors. This approach is different from
the analogical continuous case. The systems (5)–(7) and (17)–(20) represent the main
discrepancy. It seems that the developed algorithm is suitable for creating of a new software
tool.
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