NETWORK SIMULATIONS WITH JAVA SSFNET
PLATFORM

Ing. Marek HUCZALA, PhD Degree Programme,
Dept. of Telecommunications, FEEC, BUT
E-mail: huczala@kn.vutbr.cz

Supervised by: Dr. Vladislav Skorpil

ABSTRACT

The following paper introduces Java SSFNet platfedncomputer network modelling
and simulations. The SSFNet platform is a Javachasdtware interface that might be
implemented on its own or with a cooperation with wpper level software kit. First, we
discuss the library classes for the network schéevelopment and the ways of launching the
network simulation process. Later chapters bridégcribe a newly developed graphical user
interface into the SFFNet platform. The use ofdimeulation sofware is outlined in the end of
the paper.

1 INTRODUCTION TO NETWORK MODELLING AND SIMULATIONS

Network modelling and simulation plays an importante when designing large
network infrastructures both heterogenous and hemmgs. The main intention of here
presented simulation software toolkit is, howevergraphically demonstrate the funcionality
of different network standards. Hopefully it wilelp students to understand the basics of
network communication.

The new simulation application was built in Javagramming language on top of
SSFNet platform for network modelling and simulaioAny user of the application can now
easily define a new network model using DML syngénd launch the simulation either by
calling SSFNet simulation process or via NetSimdew’'s menu.

Next chapters provide an overview of both SSFNatf@m and NetSim application.

2 JAVA SSFNET PLATFORM

The SSFNet is a collection of Java SSF-based coemtsfor modelling and simulation
of Internet protocols and IP (Internet Protocolsdxh computer networks. By default, the
SSFNet components are represented by Java prowtigaks that were later united into the
following two main software frameworks:

e SSF.OS is used for modeling of the host and opeyatystem components. Network and

transport layer protocol such as SSF.Net.IP andE8SH CP are laid on top of SSF.OS
class.

e SSF.Net is used for modeling network connectivityreating nodes and link
configurations. It loads all the model's configioat file and controls the orderly
instantiation of the entire model: hosts and rauteith their protocols, links connecting
hosts and routers, as well as traffic scenariosnamitiple random number streams.

3 BUILDING A NEW NETWORK SCHEME

The network configuration is stored in DML (DynamitarkUp Language) scheme
definition file. New DML file uniquely describesalcomplete network architecture from both
hardware and software aspect.

The configuration file follows the DML syntax sttuces that allow keyword, value
specifications. DML syntax grammar is based ondaadized well-known XML structure.

Network file scheme definition begins with keywostheme and Net as it follows:

schemas [
Net [
frequency sinulation_runtinme
The frequency attribut specifies the total time of simulatioropess. Network, always
defined by theNet keyword, represents a set of hosts, routers, lmkswhen modelling more
complex network environments even subnets.

Here is an example of a subnet definition using\ttekeyword:

Net [
idid_no
idrange id_no from--- to ---

ip net_mask_def
_extends .schemas. Net

]

Theid andidrange attributes are used for subnet identification wipl attribute passes
on network mask definition. Theaxtends attribute specifies the higher level syntax used -
current example it follows the default Net scheffiee SSF.Net.host intruduces the following
host configuration scheme:

host [
idid_no
idrange id_no from--- to ---

]

Router definition very likely follows th&ost definition. Interfaces of the implemented
network elements are described by a local keyworerfiace followed by a set of attributes
such aditrate, latency or virtual. Links connecting network nodes are set upitiykeyword
whereas the traffic flow between nodes is defingdr &ffic keyword and its attributes. Every
fragment of the DML definition file is processed a@yorresponding class. For example, host
definition is being handled by SSF.Net.host clabgeninks by SSF.Net.link principal class.

By default, the network definition scheme is intetpd by SSF.Net.Net class. It loads
the complete network model, network elements sichoaters, hosts, protocols and links
specifications as well as network traffic scenario.

4 LAUNCHING SIMULATION PROCESS

Pre-simulation process is usually invoked by thennfianction of SSF.Net.Net class.
The process itself comprises of several stages.fif$testage involves schemantical DML
scheme check:

i f (doSchenmaCheck)
net confi g. check();
Configuration netcfg = (Configuration)netconfig.findSingle(".Net");
if (netcfg == null) {
Systemexit(-1);

}

if (null !'= netconfig.findSingle(".link") ||
null !'= netconfig.findSingle(".router") ||
null !'= netconfig.findSingle(".host")) {

Systemexit(-1);
}

Within this pre-simulation stage some essentiahpaters are being checked, such as
link, router or host. The IP address space ofetlivorks and subnets is being allocated in the
2nd stage. Routing informations are added subsd#gudnnks and connections between
network nodes are being checked in the end of iidesipnulation process.

At programmer’s view, the SSF.Net.Net object wdklthe services of the DML library
to load the content of the configuration files andt.dml (by default) into a runtime
Configuration database object. After that, SSFMt. will systematically instantiate and
configure all simulation objects such as hoststaxs protocols, and network links. Once all
simulation objects have been instatiated, the althtion phase begins by callingit()
methods of all the entity subclasses. Finally SSEMet invokes its methostartAll(), and
the simulation begins with simulation time valueualqto O sec. There is a lot of verbose
output, including the automatically generated IErads blocks etc., that may be suppressed
by command line options to SSF.Net.Net.

The simulation runtime may be specified as a contrere argument to SSF.Net.Net
class or directly inside the configuration scheitee The Java Development Kit 1.3 or higher
is required for running all the SSFNet simulations.

5 GRAPHICAL USER INTERFACE — NETSIM

The simulation results as they come out of the S&KRNnulation process can only be
viewed in a text mode. The main purpose of buildingew graphical application NetSim is to
be able to demonstrate the results in a windowesdhape.

The application window consists of a network schémernal frame, state bar showing
the current simulation state and the simulatiomultedrame. The network scheme is being
drawn during the pre-simulation process inside dtigeme internal frame. The information
included in the network configuration file is ustnt this purpose. The window’s state bar
shows the the current simulation state. The barvisked by the pre-simulation process. The

simulation results are shown in the very bottomt par the application window. The
application’s toolbar consists of two icons whickght be used in later development stage for
for tracing the simulation process. Figure 1 showsvork scheme and results of a simple
client-server simulation running on SSFNet platform

= NetSim
Control Help

OpenFile Ctrl-0
Close Ctrl-C

etsimiroutingtwo_TCP_hosts.dml ©

Router ID:1

Router 1D:2

The configuration file Clprinetsimroutingitwa_TCP_hosts. dm
The simulation process started with a simulation time of 100000 ms
--- Phase I constructing table of routers and hosts
--- Phase II: connecting Point-To-Point links
--- Phase IlIl: adding static routes
Net config: 2 routers and hosts#s Elapsed time: 0.321 secondsBuilding a new network picture:
--- Host ID: 2, position [250;120]
--- Host ID: 1, position [100,50]

——— Phase I: constructing table of routers and hosts

——— Phase II: connecting Point-To-Point links J
Attached interfaces #:2

——— Phase III: adding static routes

Net config: 2 routers and hosts

Elapsed time: 0.321 saconds

%% Running for 10000000000000 clock ticks (== 100000.0 seconds sim tima)
1.26200004 TCP host 1 src={0.0.0.1:10001} dest={0.0.0.2:10} Active Open
1.26250324 TCP host 2 src={0.0.0.2:10} dest={0.0.0.1:100013} SYN recvd
2.09911076 [sid 1 start 1.26200004] client 1 srv 2{0) rcvd 10000000BR at 95566.
808kbps - read() SUCCESS

2.09911076 TCP host 1 src={0.0.0.1:10001} dest={0.0.0.2:10} Active Close
2.09961396 TCP host 2 src={0.0.0.2:10} dest={0.0.0.1:10001} Active Close
2.09961396 TCP host 2 src={0.0.0.2:10} dest={0.0.0.1:10001} Passive Close
121.99349961 TCP host 1 src={0.0.0.1:10001} dest={0.0.0.2:10} 2ZMSL timeout, con
naction closed

| 1 timelines, 5 barriers, 220013 events, 981 ms, 366 Kevt/s

-l
Fig. 1: The NetSm application window shows results of a simple SSFNet client-server
simulation.

The advantages and disadvantages of using NetSime émm the properties of Java
programming language. The object-oriented programlecis simple to read and easy to
change and simulations can be run under differpatating systems, including Windows or
Linux. The application NetSim and simulation platio SSFNet, however, require a huge
memory space when modelling complex network envirents.

6 CONCLUSIONS

The paper introduces a Java-based platform for arétwnodelling and simulations
SSFNet. SSFNet kernel and its source code can $ily emwnloaded and installed from
www.sffnet.org.

NetSim is a Java-based graphical user interface wlas developed to graphically

demonstrate the results of SSFNet simulation psocese Jgraphniww.jgraph.com) graphics
library is used to picture the detailed networkesub.

NetSim is fully open for further adjustments angiovements. Adding the possibility
to trace the simulation process could be one ahthe

The NetSim package and the installation instrustican be downloaded from the
authors web siteh{tp://hawk.cis.vutbr.cz/~huczal a/vizualizace).

REFERENCES

[1] HUCZALA, M. Vizualization of routing algorithms i CP/IP network environments,
final report to the FRVS grant project, Brno 2005.

[2] SSFNet Community. SSFNet 1.3 DML Reference, wwwiesisbrg.

[3] SSFNet Community. Implementation and Validationt3es
http://www.ssfnet.org/Exchange/tcp/index.html.

[4] SSFNet Community. SSFNet software exchange, Packageiew,
http://www.ssfnet.org/exchangePage.html.

