EXPERIENCE FROM VERIFYING IN TVLA

Ing. Pavel ERLEBACH, Doctoral Degree Programme (2)
Dept. of Intelligent Systems, FIT, BUT
E-mail: erlebach@fit.vutbr.cz

Supervised by: Prof. MilaGeska, Ing. Tomas Vojnar, Ph.D.

ABSTRACT

This paper investigates capabilities of the TVLA, which is one of the most promising
tools for automated formal verification of programs manipulating unbounded dynamic data
structures. We chose two areas to be verified with this tool and we hope that we will learn
as much as possible from problems arising in the verification process. In the future we
would like to eliminate some of these problems.

The first set of examples contains the operations with binary sorted trees. After
executing these procedures we verify if the tree is sorted after the insertion and if all the
pointer manipulations were correct (no memory leakage, null pointer dereferences, etc.).
The second example is the Bakery algorithm which is one of the most famous mutual
exclusion algorithms. We want to verify safety of this algorithm.

1 INTRODUCTION

We address the problem atitomated formal verificatioof programs handling dy-
namic recursive data structures via pointers (or references). Formal verification of such
programs is a very difficult task—it is easy to show it is undecidable. This is caused by
the fact that such programs work with unbounded structures, which leads to a necessity of
dealing with infinite state spaces. To be able to cope with them, we need a suitable finite
representation of infinite sets of states, which in the worst case can have a complex graph
structure, and (semi-)algorithms working over these structures and capable of returning as
precise as possible results and terminating as often as possible.

There have been proposed several (though still not yet fully satisfactory) approaches
to formal verification of programs manipulating pointers. We show only a short digest.
One of the least automatic is the use of Separation Logic [1] which is an extension of
Hoare logic. PALE [2] works on a similar basis but the verification is more automatic.
Even more automatic is the approach of the parametric shape analysis implemented in the
TVLA tool [3]. That is the method we aim to at this paper. The approach is based on an
automatic abstraction of memory configurations (denoted as stores) using 3-valued logic

wrt. a given set of instrumentation predicates and on an automatic computation of sets of
abstract stores reachable at particular program points.

The paper is organized as follows. In Section 2, we describe the examples which we
have chosen for analysis of TVLA. In Section 3 and 4 we discuss verification of operations
of the binary sorted tree and the Bakery algorithm. We discuss the results and our future
plans in Section 5.

2 EXAMINED EXAMPLES

For effective analysis of capabilities of TVLA we aim at nontrivial algorithms which
may cause some problems when verified. From these problems in the verification pro-
cess of such algorithms we will learn much more than from verifying of already solved
problems. In TVLA exist many enclosed examples which verify procedures working with
linear linked lists, so we choose from algorithms working with nonlinear data structure.

As the representatives of the algorithms working with complex data structure we
chose the operations with binary sorted trees, i.e. ltsertBST , SearchBST and
DeleteBST procedures. After executing each procedure we want to verify that the tree
remains sorted, that all pointer manipulations were valid and that the procedure works as
expected (e.g. imsertBST the new node was inserted).

One enclosed example does the same thingsertBST , but it checks onlyar-
tial sortedness, i.e. that left (or right) child of the nadés smaller (or bigger) than
respectivelly. We propose checking of tiul sortedness, i.e. all nodes in the left (or right)
subtreeof the noden are smaller (or bigger) tham

The algorithm mentioned above works with data structures that have predefined for-
mat (binary sorted trees). For further analysis we choose the Bakery algorithm [5] which
is one of the most famous mutual exclusion algorithms. It works for unbounded num-
ber of processes without any special atomic operations. It consists in takiriggkbe
by processes which want to enter critical section and then resolving which process may
enter. This will lead to complex memory states where generally graphs without any prede-
fined structure may appear. Moreover, we will test the ability of TVLA (or more precisely
TVMC—extension of TVLA for concurrent systems) to verify parallel programs.

To recall the way thénsertBST (which is analysed in this paper more in detail)
may be implemented and the core of the Bakery algorithm, here are the codes, whereas
(a,b) < (c,d) is an abbreviation for the conditiga < c) || (a==c && b < d).

InsertBST(Tree *x, Tree *y) { | /* Bakery algorithm */
Tree *z, *; | choosing[i] = true;
zZ = X | num[i] = max(num[0]..num[n-1])+1;
while (z '= NULL) { | choosing[i] = false;
t =7z | for (j=0; j<n; j++) {
if (z->d == y->d) exit; | while (choosing[j]) {}
if (z->d > y->d) z = z->left; | while ((num[j] = 0) &&
else z = z->right; | (num[jL,j) < (numlil,)) {}
| }
if (t->d > y->d) t->left = vy; | /* Critical section */
else t->right = vy; | num[i] = O;

} | /# Noncritical section */

3 VERIFICATION OF THE OPERATIONS OF BINARY SORTED TREES

In case of theéSearchBST procedure the verification is trivial since the tree is not
modified within the procedure. In case of timsertBST procedure we found out that
the supplied information is not sufficient which means that the verification always results
in 1/2 (unknown value). It is caused by the fact that as the pordescends from the root
to the leaves, then the information about the path of this pointer is lost. It is the effect of
the abstraction to the three valued logic.

To solve this problem we have to add one new instumentation predjgaygVv).

This predicate can keep the information about the path of the panitsrdefinition is:

iX,Y](V) = 3vi,Vvo,V3 1 X(V1) AY(V2) AdownStafvs,vi)A
(right(v,v3) Adle(v,v2) Vleft(v,v3) Adle(va,V))

Its meaning can be described as: they|(v) holds if “addingy after X’ does not harm
sortedness of the nodenvhere adding afterx means adding the node which is pointed to

by y after the node which is pointed to By Thanks to this the information about the path
remain achieved and after adding a new node we can say for certain, whether the modified
tree is sorted or unsorted.

In case ofDeleteBST a complicated situation arose. It was caused by the fact
that deleting a non-leaf node results in nontrivial rotations of the tree. It was difficult to
verify because in the program there were 8 active pointers at the same time which led to
the state explosion. The number of pointers is partally caused by the inability of TVLA to
perform statements likié (x->next == NULL) . More precisely, it is able to perform
such statements but with zero effect. Being short, when executing this statements, some
memory states satisfy this condition and some not. But then comes to place the blur phase
which joins some of satisfying states with the other ones and the resulting state of memory
is the same as at the beginning. So when one wants to peformx->next after the
condition mentioned above it may result in false alarms. This has to be solved by adding
auxiliary pointer.

4 ANALYSIS OF BAKERY ALGORITHM

There have already been some successful attempts to verify Bakery algorithm [4] but
in that case it was verified manually. We hope that in TVLA the verification will be more
automated.

Bakery algorithm uses three data types: b@mioosing, int (num) and constant
(process ID). To make verification possible we must represent these types suitable. One
of the possible representations is as follows: Bool needs no special representation, it is
represented by a unary predicate. For representing IDs of the processes we can line up the
processes into single linked list and define that the position of the process in the list mirrors
the value of the ID, e.g. the first process has the smallest ID, the last process the greatest
ID, etc. For representing local integers we need the auxiliary single linked list to which the
processes point. Process which points to the first node has the smalgstc.

Unfortunately, after creating the code the verification resulted in some false alarms.
They are caused by the fact that the information about the order of both processes and

nodes in the list is completely lost. In the program we have unbounded count of the pro-
cesses pointing completely randomly to the unbounded count of the nodes (and processes).
For precise representation of the relations between processes and nodes one would need
unbounded memory and time. The abstraction degrades this configuration to one summary
node which is pointed to by all processes. Moreover, we did not succeed to find the in-
strumentation predicate which would solve this property. For make it clear, we desribe the
differences from the verification of tHesertBST procedure. Even there it was possible

that in some states the whole tree (except the root) was reduced to one summary node but
as the pointer descended down to the leaves, we exactly knew the structure of the tree, i.e.
every node has up to two children, left child is smaller than its parent, etc. In the case of
Bakery algorithm we know almost nothing when this summary node appears, i.e. which
process was at the beginning of the cycle of tests, which was just before the entering to the
critical section, etc.

In the verification of the original Bakery algorithm we did not succeed, so we come
up to some simplifications. Instead of pointers we will have only two unary predicates
min(t) andmin_p(t). Themin(t) predicate holds if the proces$as the smallest ticket
num Themin_p(t) predicate holds imin(p) holds and the processhas the smallest ID
of all the processes which satisfymin(u). The motivation is that we are not interested in
the information about the process with the smallest ID (e.g. this process may never ask for
entering the critical section) but we want to know which process of the ones with minimal
ticket has the smallest ID—it is the promising adept for entering the critical section.

Only the information about the minimal ticket and minimal ID remains, so it is nec-
essary to simplify the verified algorithm. It is not possible to simulate cycles with such
predicates so we have to create a simpler version of the algorithm where the tests in cy-
cles are atomic, i.e. testing ohoosingvariable and the testing elumvariable and ID of
the process. It is quite radical modification and the eventual verification would not be so
valuable. The Bakery algorithm is distinctive thanks to the fact that it works without any
special atomic operation. On the other hand non-atomicity of assigning the maximum (at
the second line of the code) was preserved after adding next predatatén

After this simplification the verification results in correct answers but the computa-
tion time lasts roughly days. Even the code has only 8 lines and 3 predicates, it is enough
to the state explosion. After some minor optimization the verification ends in minutes.
However, it means additional work required from the user.

The variant of the Bakery algorithm, where the seemingly unnecessary variable
choosingis missing, is frequently mentioned as the “false Bakery algorithm”. This vari-
ant does not ensure the mutual exclusion—for 3 or more processes it can happen that two
processes enter the critical section. We tried to verify this variant also and the result was
correct, so the verification showed that the algorithm is not safe.

5 CONCLUSION

We succeeded in the verification of tBearchBST andInsertBST procedures
with the full sortedness property. However, we had to supply relatively big amount of ad-
ditional data despite the fact that TVLA is classified as one of the most automatic tools for
formal verification of programs which perform destructive updating. Aside from the initial

state and predicate update formulae (which define changes in predicates while executing
statements of the program) we had to supply the new instrumentation predicate. It needs
quite insight to create a helpful one. For this predicate we had to create nontrivial predicate
update formulae and finally the verification resulted in the correct answers.

In the case of th®eleteBST procedure the state explosion arose which was caused
by a great number of active pointers at the same time in the procedure. The count of
pointers had to be increased due to the inability of TVLA to perform statements like
(x->next == NULL) which led to need of auxiliary ponters.

In the case of the Bakery algorithm the verification resulted in false alarms due to the
loss of information which we were not able to reduce. However, we were able to verify the
simplified version where the cycles with tests were replaced by atomic operations. First,
the computation took about days, but after some optimizations it was reduced to minutes.
Nonetheless, even the verification of the simpler version of the Bakery algorithm needed
guite big amount of information manually supplied. We were also able to detect violation of
safety while verifying the “false Bakery algorithm” whethoosingvariables are missing.

These problems in the verification gave us valuable clues and in the future we plan to
aim at following tasks namelly. In the verification of both theleteBST procedure and
Bakery algorithm we had problems with the state explosion, so it would be very interesting
to examine possibilities of reduction of the state space, e.g. the partial order method and
symmetry reduction method seem to be very promising. These methods were developed
in the context of finite state space, so we will have to adjust them to work in the context of
unbounded state space.

Other task, we are interested in, is the inability of TVLA to verify the original Bakery
algorithm. The reason is that the memory states contain very complicated net of pointers
which are pointing to each other entirelly randomly and the abstraction causes a drastic
loss of information. By the verification of theeleteBST procedure we learned an in-
teresting property of TVLA — inability to perform statements liike(x->next ==
NULL). Last but not least, it would be appealing to examine the possibility of the parallel
or distributed computation which would also make the computation time shorter.

We would like to aim at improving all of these properties of the verification tool
preferably in self made tool where it would be easy to practise the experiments.

REFERENCES

[1] Reynolds, J.C.: Separation Logic: A Logic for Shared Mutable Data Structures. In Proc. of
LICS’02. IEEE Computer Society, 2002.

[2] Magller, A., Schwartzbach, M.l.: The Pointer Assertion Logic Engine. In Proc. of PLDI'01,
2001. Also in SIGPLAN Notices 36(5), 2001.

[3] Sagiv, S., Reps, T.W., Wilhelm, R.: Parametric Shape Analysis via 3-Valued Logic. TOPLAS,
24(3), 2002.

[4] McMillan, K., Qadeer, S., Saxe, J.: Induction in Compositional Model Checking. In CAV
2000, Eds. LNCS 1855.

[5] Lamport, L.: A New Solution of Dijkstra’s Concurrent Programming Problem. Commun.
ACM, 17(8):453-455, 1974.

