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ABSTRACT 
High-dimensional deformable registration of MRI brain images is presented here. The 

deformation is driven by local forces estimated from point similarities based on joint 
histogram and with the use of prior information obtained from tissue probability maps 
available in selected commonly used brain atlases. Three point similarity measures are tested 
in an experiment with data obtained from standard Simulated Brain Database. 

1 INTRODUCTION 

Image registration methods have been used in many clinical applications in recent years. 
One of their application field is the atlas-based registration of MRI brain images. A subject 
image is transformed into the brain-based coordinate system (stereotaxic space), where it can 
be further processed with a number of applications such as tissue classification, anatomical 
labeling, voxel-based or deformation-based morphometry. Each of the applications needs a 
different level of the subject image alignment with a template image, ranging from rigid or 
affine trasformations to low or high-dimensional deformations. 

In this paper, we focus on the high-dimensional deformable registration of multi-modal 
data because the character of the intensities in the subject and the template images differs 
often. Some authors [1], [2] apply an intensity transformation to one of the images, in order to 
use one of already settled high-dimensional mono-modal registration algorithms. Recently 
Rogelj et al. [3] proposed several point similarity measures allowing to solve the 
high-dimensional deformable registration directly from multi-modal data. We adapt here 
some of his ideas to the specific problem of MRI brain images located in the stereotaxic 
space. 

2 METHODS 

The whole process of image alignment is usually split into two stages. In the first one, 
the subject image is transformed to the same coordinate space as the template image is. In the 
second one, a deformable registration is performed to supress the misalignments remaining 

  



after the first step. Here, the deformable registration is further subdivided into a 
low-dimensional and a high-dimensional registration. Multiresolution affine registration 
based on mutual information [4] turned out to be a proper technique for the first step. The 
following low-dimensional deformable registration has been solved in our previous work by 
block matching technique with the use of multimodal region similarity measure. The subject 
image is subdivided into blocks for which optimal translations are searched. The local results 
are then interpolated with the use of radial basis functions to compose a free-form 
deformation. The size of the image blocks is subsequently decreased, but it cannot be 
arbitrary small, as the local translations are computed independently for each region and no 
voxel interdependencies are taken into account when the deformation is calculated. 

To make the deformable registration more precise, the high-dimensional registration is 
added here. We follow the concept of Rogelj et al. [3], see fig. 1 for the basic scheme. At first, 
local translations F (usually referred as forces) are calculated at each voxel as an estimate of a 
gradient of a similarity function with respect to the template image M. Then, a spatial 
deformation model is used to compute the deformation U of the subject image N from the 
local forces. The process is iterated with a predefined number of iterations or until a global 
similarity measure stops increasing. 
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Fig. 1: Deformable registration scheme (see the text for details).  

The spatial deformation model proposed in [5] is used here. It is defined by: 
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The first part (1) follows Hook's law to compute unregularized displacements. It says that the 
points move proportionally to the applied forces F with the constant kE. The second part (2) 
regularizes the displacements by convolution filters GI and GE which define spatial 
deformation properties of the modeled material. If GE = δ (Dirac's delta function), the 
displacement field in the current iteration UF

(i) is computed by summing the already obtained 
displacements U(i-1) with the correction displacements UF

(i) regularized only by filter GI. This 
configuration corresponds to an incremental model which allows large deformations and 
precise registration. The configuration with GI = δ corresponds to an elastic model. The forces 
are regularized only by filter GE which becomes wider for the forces in earlier itearations. The 
pure elastic model makes it impossible to absolutely correct local misalignments, but it 
models deformation properties of the real tissues better than the incremental model. The 
gaussian kernels are used here as a separable aproximation to the elastic kernel proposed in 
[6]. The behaviour of the combined elastic-incremental model depends on the ratio between 
the standard deviations σ of the Gaussians. Bigger σ corresponds to wider filter impulse 

  



response and to a stiffer material whereas narrower impulse responses model more flexible 
material. 

In this paper, we use three multimodal point similarity measures for local forces 
estimation, in order to compare their functionality in an experiment. First similarity measure 
is defined by: 

 ( ) ( MNCP iiPiS = ),         ( 3 ) 

It is the same measure which was used in our previous work for block matching, where 
similarities of intensity pairs in all voxels of a block were summed. It was first proposed in 
[7]. The similarity of an intensity pair i is given by conditional probability that a subject 
image intensity iN occurs when given a template image intensity iM. The conditional 
probabilities are computed from a joint histogram of the images M and N. The joint histogram 
can be computed only from correctly registered images. As the registration is not known, an 
assumption, that the previous registration techniques aligned the images enough to expect 
only small deformation, has to be accepted. 

The second similarity measure was designed according to the idea given in [3]. A 
segmentation-based point similarity function is defined there as a probability of an intensity 
pair belonging to one of the true classes of image intensities: 
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where Cl denotes intensity class representing a tissue type pair, CT is a set of all true intensity 
classes which correspond to the same tissues in both images and L denotes number of classes 
found in the joint histogram by an exhaustive search. In our case, intensities of MRI brain 
images form classes for certain tissues, thus this type of similarity measure appears to be 
suitable for them. In addition, the true classes for MRI brain images are known in advance: 
white matter (WM), gray matter (GM) and celebrospinal fluid (CSF). Therefore L=3, the term 
P(CT|Cl)=1 for each l and (4) can be reduced to: 
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A posterior probability P(Cl|i) shows the chance that certain intensity pair i belongs to a 
certain class Cl and it is according to Bayes rule defined by: 
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where p(i) is probability density function of intensity pair i estimated from joint histogram. A 
set of samples is used to compute class probabilities P(Cl). Class conditional probability 
density functions p(i|Cl) are aproximated by gaussian distributions with mean values and 
covariance matrixes estimated also from the set of samples. The spatial coordinates of the 
samples are derived from tissue probability maps which are available in the case of atlas 
based template image. The tissue probability maps are sampled in the predefined number of 
spatial locations with the highest probabilities. 

Another multimodal point similarity measure for images without formed tissue classes 
is proposed in [3]. Each intensity pair i is treated as its own intensity class  Ci with probability 
P(Ci)=p(i), mean values i and P(Ci|i)= δ(i). The similarity function is then defined as: 
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The logarithmic function is applied in (8) to make the similarity function dependent on 
uncertainity rather than probability. 

The displacement field U is successively updated during the registration process. To 
update the joint histogram, the subject image has to be deformed in every iteration. The 
calculation of the deformed image intensities incorporates a scatter data interpolation method 
which brings a big computational load in the case of 3D data. Scatter data interpolation 
methods are avoided in our implementation by using generalized partial volume estimation 
(GPVE) proposed in [8]. Weights corresponding to an interpolation kernel function are 
calculated for each of the template image voxel in the certain neighbourhood of the displaced 
subject image voxel. The weights are accumulated for all intensity pairs and the resulting 
sums of weights replace usual numbers of occurences. The same approach was used here also 
for the calculation of the similarity measures SPC and SUH. The neighbourhood contains 27-64 
voxels for 3D data and 4-16 pixels for 2D data in case of B-spline function of the 3rd order as 
the kernel interpolation function. A similar situation arises when the set of samples has to be 
determined to compute the similarity measure SS. Spatial locations in the tissue probability 
map correspond with locations in the template image, but they differ from positions of the 
displaced voxels in the subject image. Again, the number of occurences are replaced by sums 
of weights calculated by locally bounded weight functions used usually in the Shepard scatter 
data interpolation. In this way, the deformed image has not to be computed during the 
registration process which is accelerated in this way. 

 
e1RMS = 1,93 mm e1RMS = 2,92 mm e1RMS = 3,90 mm e1RMS = 4,83 mm

e2RMS, mm e2RMS, mm e2RMS, mm e2RMS, mm 
ps1 ps2 n, % rf, % SPC SS SUH SPC SS SUH SPC SS SUH SPC SS SUH

T1 T1 0 0 1,30 1,42 1,42 1,93 2,44 2,06 2,83 3,51 2,90 3,90 4,50 4,01
T1 T1 3 20 1,38 1,43 1,44 2,02 2,33 2,16 2,80 3,35 3,06 3,76 4,44 4,04
T1 T1 3 40 1,38 1,49 1,41 2,01 2,39 2,11 2,78 3,36 2,99 3,69 4,34 4,07
T1 T2 3 20 1,36 1,66 1,45 2,11 2,60 2,29 3,10 3,54 3,30 4,11 4,45 4,32
Tab. 1: Comparison results for registration with various  point similarity measures.  

3 RESULTS 

The performance of the algorithm with various point similarity measures was evaluated 
by computing a decrease of displacement error which was caused by a synthetic deformation.  
2D images obtained from Simulated Brain Database were padded to the size of 217x217 
pixels (the pixel size was 1x1 mm) and then deformed by random translations at 10% 
randomly selected pixels. The combined incremental-elastic spatial deformation model with 
random convolution kernel widths 10±5 mm was used iteratively to obtain final displacement 
fields. The deformations were applied on 20 image pairs, repeatedly for various initial 
displacements formulated by root-mean-squared error e1RMS, level of noise n, intensity 
nonuniformity rf, and pulse sequenses of the template and subject images ps1 and ps2. The 

  



spatial deformation model for registration was set by σGI=4 mm and σGE=1 mm. The 
registration process was terminated when global similarity based on mutual information 
stopped increasing, which was after 5-15 iterations. Residual displacements e2RMS after the 
registration are summarized in tab. 1. 

4 CONCLUSION 

The algorithm for high-dimensional registration of MRI images was presented and three 
different point similarity measures for multi-modal data were studied here. The similarities 
were measured with the use of joint histogram and tissue probability maps from MRI brain 
atlases. The results of registration were best for similarity measure SPC which is based on 
intensity distribution only. The initial displacement error was decreased by 15-30%. A global 
similarity measure mutual information was increased in all cases. In our implementation, 
interpolation in the feature space was used, so that it was unnecessary to compute the 
deformed subject image during the registration process. If only the resulting displacement 
field is the object of examination, then the deformed image does not need to be computed 
once. 
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