
THE ALGORITHM FOR REDUCING THE NUMBER OF THE
NONTERMINAL SYMBOLS IN THE FE0L SYSTEMS

Ing. Ivana RUDOLFOVÁ, Doctoral Degree Programme (1)
Dept. of Information Systems, FIT, BUT

E-mail: rudolfa@fit.vutbr.cz

Supervised by: Dr. Jaroslav Zendulka

ABSTRACT
This paper introduces FE0L (forbidding context-free L systems) and FET0L (FE0L

systems with tables) systems with permitting conditions and the algorithm for reducing the
number of the nonterminal symbols in FE0L (FET0L) systems. The productions of FE0L
(FET0L) systems (grammars) do not have only the forbidding conditions but also other
attached strings, called permitting conditions. The derivation step can proceed in these
systems, when the sentential form contains all substrings from the multiset of permitting
conditions. This multiset is created in each derivation step according to the productions which
are used for this derivation. The algorithm produces a new FE0L (FET0L) grammar with
permitting conditions, which generates the same language as the original system.

1 INTRODUCTION

ET0L grammars with forbidding conditions (FET0L grammars) represent an important
type of parallel grammars (systems). However, these grammars usually contain many
nonterminal symbols. It might be inconvenient for some applications of these grammars.
Therefore, this paper presents the algorithm for reducing the number of nonterminal symbols
in FET0L systems. The algorithm enables to create the system with seven nonterminal
symbols for arbitrary input system. The output system describes the same language as the
original system. It is possible to use ET0L systems with only forbidding conditions for the
resulting grammar, but the majority of the productions will contain too many forbidding
conditions. These forbidding conditions can be replaced with one permitting condition.
Therefore, we have designed the FET0L systems with permitting conditions for the output
system. The following text is divided into two parts. The first part is devoted to the theory of
L systems. In the second part, the algorithm itself is presented.

2 L SYSTEMS

L systems (Lindenmayer systems) are parallel rewriting systems, where all letters in a
string are simultaneously rewritten in each derivation step. These systems were introduced by

Aristid Lindenmayer to model the development of filamentous organisms [1], in which cells
can communicate and interact with each other. If the rewriting of a letter depends on m of its
left and n of its right neighbors, where (m, n) is fixed pair of integers, then the system is
system with interactions – an IL system. In this paper, we concentrate on the L systems
without interactions (the systems where 0== nm). These systems are denoted as 0L systems.
L systems usually do not use any nonterminal symbols, the 0L systems, which use
nonterminal symbols, are denoted as E0L systems (extended 0L systems). The productions of
E0L system can be divided into several groups and in one derivation step only the productions
from the same group can be used. These systems are denoted as ET0L systems (the group of a
production is called table). In the following subsections, ET0L grammars, forbidding ET0L
grammars and FET0L grammars with permitting conditions are described.

2.1 ET0L GRAMMARS

An ET0L grammar is a -tuple, 3+t ()SPPTVG t ,,...,,, 1= , , where V, T and S are

the total alphabet, the terminal alphabet

1≥t
()VT ⊂ , and the axiom ()+−∈ TVS , respectively.

Each is a finite set of productions of the form , where and . If
 implies

iP xa → Va∈ *Vx∈

iPxa ∈→ ε≠x (ε denotes an empty string) for all { }ti ,...,1∈ , G is said to be
propagating (EPT0L grammar for short).

Let , *, Vvu ∈ qaaau ...21= , qvvvv ...21= , uq = , Va j ∈ , and is
a sequence of productions of the form

*Vv j ∈ qppp ,...,, 21

ijjj Pvap ∈→= for all , for some
. Then, u directly derives v according to the productions through , denoted

by

qj ,...,1=
{ ti ,...,1∈ } 1p qp

qG pppvu ,..,, 21⇒ .

In the standard manner, we define relations , and (). The language of
G, denoted by L(G), is defined as

n
G⇒ +⇒G

*
G⇒ 0≥n

() { }wSTwGL G
** : ⇒∈= .

Let be an ET0L grammar. If (SPPTVG t ,,...,,, 1=) 1=t , G is called an E0L grammar.

2.2 FORBIDDING ET0L GRAMMARS
Forbidding ET0L systems are ET0L systems, whose productions have some attached

strings, called forbidding conditions. These systems can make a derivation step only by using
productions, whose forbidding conditions do not appear in the rewritten sentential form. The
formal description of such systems follows.

A forbidding ET0L grammar (FET0L grammar for short) is defined as a -tuple,
, , where V, T and S have the same meanings as in ET0L grammar,

and each is a finite set of productions of the form

3+t
()SPPTVG t ,,...,,, 1= 1≥t

iP ()Fxa ,→ , where , , and a
finite set of forbidding conditions [2].

Va∈ *Vx∈
+⊆VF

Let , *, Vvu ∈ qaaau ...21= , qvvvv ...21= , uq = , Va j ∈ , and is
a sequence of productions

*Vv j ∈ qppp ,...,, 21

() ijjjj PFvap ∈→= , for all qj ,...,1= and some ,

such that (denotes the set of all nonempty substrings of u).

{ }ti ,...,1∈

() ∅=∩
=U

q

j jFusub
1

)(usub

Then, u directly derives v according to in G, denoted by qppp ,...,, 21 qG pppvu ,..,, 21⇒ .

The language of G is defined as () { }xSTxGL G
** : ⇒∈= [2].

By analogy with ET0L grammars, if 1=t , then G is called an FE0L grammar.

2.3 FET0L GRAMMARS WITH PERMITTING CONDITIONS
These systems were derived from FE0L systems for the output system of the algorithm,

which is presented in this paper. One permitting condition can replace many forbidding
conditions in the systems, which are produced by the presented algorithm. Therefore, we have
designed these grammars. Productions of these systems may have some attached strings,
called permitting conditions. During the derivation step, permitting conditions from all used
productions are stored in a multiset of permitting conditions. At the end of the derivation step,
it is checked, whether the created string contains such substrings, which are in the multiset of
permitting conditions. Here is the formal description of such system:

FET0L system with permitting conditions is a 4+t -tuple, (),,,,...,,, 1 ZSPPTVG t=
 where V is the total alphabet, T is the terminal alphabet 1≥t ()VT ⊂ and S is the axiom

. Each is a finite set of productions of the form (+−∈ TVS) iP ()DFxa ,,→ , where Va∈ ,
, and the finite sets , (of forbidding and permitting conditions). Z is

a multiset of permitting conditions.

*Vx∈ +⊆VF +⊆VD

Let , *, Vvu ∈ qaaau ...21= , qvvvv ...21= , uq = , Va j ∈ , and is
a sequence of productions

*Vv j ∈ qppp ,...,, 21

() ijjjjj PDFvap ∈→= ,, for all qj ,...,1= and some ,

such that , . Then, u directly derives v, if

{ }ti ,...,1∈

() ∅=∩
=U

q

j jFusub
1 U

q

j jDZ
1=

= () ZZvsub =∩ ,

otherwise u is not derived by G.

The language of G is defined as () { }xSTxGL G
** : ⇒∈= .

3 THE ALGORITHM FOR REDUCING THE NUMBER OF NONTERMINAL
SYMBOLS IN FE0L SYSTEMS

In this section the algorithm itself is described. The first subsection contains the formal
description of the algorithm, the second subsection describes how the new system derivates
strings and the last subsection describes the main ideas of the algorithm.

3.1 THE REDUCTION OF FE0L SYSTEMS

• Input: FE0L system with more than 7 nonterminal symbols. (sPTVG ,,,=)
)• Output: FE0L system with permitting conditions with 7 nonterminal

symbols { }.
(´´,,´, sPTVH =

XC,,2´,1´,0,1,0

• Algorithm:

1. Define arbitrary injective homomorphism { }** 1,0: →Vh , such that () εε =h ,

() { } { }21,0 nah ∈ , () () ()αα hahah = for all Va∈ and and for *V∈α ()⎣ ⎦1log += Vn .

2. Define homomorphism { }** 1́´,0´: →Vh , which will generate for a specific string the
same binary code as homomorphism , where symbols will be substituted by and
symbols 1 by .

h 0 0́
1́

3. Set and { } TXCV ∪= ,,2´,1´,0,1,0´ ()Cshs =´ .

4. Find the set of productions , which will contain these productions: ´P

4.1 () () { } () (){ }() ´´´,,´2 PahahXFhah ∈∪→ α for all productions () PFa ∈→ ,α (where
 and) Va∈ *V∈α

4.2 () { } () (){ }() ´´´,,´2 PahahCaah ∈→ for all Ta∈

4.3 { }() ´,, PCaa ∈∅→ for all Ta∈

4.4
() () () ()
() () () ´

,,1́,,,0́,,´,11
,,´,00,,,,,,,,,

P
XXCCC

⊆
⎭
⎬
⎫

⎩
⎨
⎧

∅∅→∅∅→∅∅→
∅∅→∅∅→∅∅→∅∅→

εε
ε

The algorithm can be also used for ET0L and FET0L systems. In these systems we
apply the step 4 of the algorithm on each table of productions of the input system. The new
system has the same number of tables as the input system.

3.2 DERIVATION OF STRING IN NEW SYSTEM

When the system G generates the string in n steps, then system H generates the
same string in steps. In first n steps the system H simulates the derivation in the original
system by using productions described in 4.1. During this part of derivation, there is the
nonterminal C at the end of the string. In the last step of this part of derivation, the binary
code of string x is generated and the nonterminal C is rewritten to X (in this step we obtain
sentential form:).

*Tx∈
2+n

()Xxh

In the next step, the terminal symbols are generated from their binary codes by using
productions described in 4.2 and nonterminal X is rewritten to ε . We obtain a string, where
there is its doubled binary code () ()ahah ´´ before each terminal symbol. This step cannot be
performed if the string contains binary code of some nonterminal symbol. This symbol can be
rewritten with some production described in 4.1, but this production cannot be used because
of nonterminal X which is contained in the string (X is one of the forbidding conditions in
productions described in 4.1).

In the last step, all symbols and are rewritten to 0́ 1́ ε . In this step the productions
described in 4.3 are used. In this step we obtain the string x. The derivation can proceed, but
we can use only the production described in 4.3, so the result of the following steps will be
again the string x.

3.3 MAIN IDEAS OF THE ALGORITHM
For all symbols from the input system the binary code is created. The nonterminal

symbol 2 is used as a separator of binary codes of symbols (in productions, in axiom and in
forbidding conditions). Every binary code of a symbol (of input system) in sentential form is
followed by the symbol 2. Therefore, we can substitute all productions from the input system

with productions with symbol 2 on the left side. (The algorithm is designed for the context-
free systems, so there can be only one symbol on the left side of each production – terminal or
nonterminal. Productions cannot be substituted with productions for binary codes of symbols,
because they contain more than one symbol. For this reason, we use productions with symbol
2 on the left side.)

It is also necessary to ensure, that the production which will be used in the next
derivation step corresponds to the production for the symbol which we try to rewrite. Because
the new system contains many productions with symbol 2 on the left side, we have to
distinguish these productions. We have to ensure the connection between the binary code of a
symbol (from the original system) and the production with symbol 2 on the left side, which
replaces the production from the input system.

This requirement is reached in the new system by following steps:

• we add productions , , 0́0→ 1́1→ ε→0́ , ε→1́ . When we obtain a binary code
of a symbol in sentential form, then in the next step, by using these productions,

we obtain a binary code and in the next step the code is reduced to an empty
string

()ah a
()ah´

• productions that form the input system are replaced by productions with symbol 2 on
the left side and on the right side there is a binary code of the symbol , which was
on the left side of the production in the input system in the form, and then the right side
of the original production, where all symbols are replaced with their binary codes

()ah´

• we add permitting conditions to productions with symbol 2 on the left side. The
conditions are of the form () ()ahah ´´ , where is a symbol, which was on the left side
of production in the input system

a

By these steps, we can perform the connection between the symbols from the input
system and productions with symbol 2 on the left side. The following example shows how the
system works.

4 CONCLUSIONS

The algorithm for reducing the number of the nonterminal symbols in FE0L systems is
introduced in this paper. The algorithm produces a new system, which generates the same
language as the original system. The output system is FE0L (FET0L) system with permitting
conditions, which contains only 7 nonterminal symbols. FE0L (FET0L) systems with
permitting conditions are also presented in this paper. We designed these systems especially
for our algorithm. The algorithm can be used for FE0L, FET0L, E0L and ET0L systems. The
number of forbidding conditions in the input and the output system is the same. The output
system is context-free as well as the input system. Only some productions of the output
system contain one permitting condition.

REFERENCES
[1] Rozenberg, G., Salomaa, A.: The mathematical theory of L systems, Academic Press,

London 1980, ISBN/ISSN 0125971400

[2] Meduna, A., Švec, M.: Forbidding ET0L Grammars, Elsevier Science (2003)

	INTRODUCTION
	L SYSTEMS
	ET0L GRAMMARS
	FORBIDDING ET0L GRAMMARS
	FET0L GRAMMARS WITH PERMITTING CONDITIONS

	THE ALGORITHM FOR REDUCING THE NUMBER OF NONTERMINAL SYMBOLS
	THE REDUCTION OF FE0L SYSTEMS
	DERIVATION OF STRING IN NEW SYSTEM
	MAIN IDEAS OF THE ALGORITHM

	CONCLUSIONS

