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ABSTRACT 
This paper introduces FE0L (forbidding context-free L systems) and FET0L (FE0L 

systems with tables) systems with permitting conditions and the algorithm for reducing the 
number of the nonterminal symbols in FE0L (FET0L) systems. The productions of FE0L 
(FET0L) systems (grammars) do not have only the forbidding conditions but also other 
attached strings, called permitting conditions. The derivation step can proceed in these 
systems, when the sentential form contains all substrings from the multiset of permitting 
conditions. This multiset is created in each derivation step according to the productions which 
are used for this derivation. The algorithm produces a new FE0L (FET0L) grammar with 
permitting conditions, which generates the same language as the original system. 

1 INTRODUCTION 

ET0L grammars with forbidding conditions (FET0L grammars) represent an important 
type of parallel grammars (systems). However, these grammars usually contain many 
nonterminal symbols. It might be inconvenient for some applications of these grammars. 
Therefore, this paper presents the algorithm for reducing the number of nonterminal symbols 
in FET0L systems. The algorithm enables to create the system with seven nonterminal 
symbols for arbitrary input system. The output system describes the same language as the 
original system. It is possible to use ET0L systems with only forbidding conditions for the 
resulting grammar, but the majority of the productions will contain too many forbidding 
conditions. These forbidding conditions can be replaced with one permitting condition. 
Therefore, we have designed the FET0L systems with permitting conditions for the output 
system. The following text is divided into two parts. The first part is devoted to the theory of 
L systems. In the second part, the algorithm itself is presented. 

2 L SYSTEMS 

L systems (Lindenmayer systems) are parallel rewriting systems, where all letters in a 
string are simultaneously rewritten in each derivation step. These systems were introduced by 

  



Aristid Lindenmayer to model the development of filamentous organisms [1], in which cells 
can communicate and interact with each other. If the rewriting of a letter depends on m of its 
left and n of its right neighbors, where (m, n) is fixed pair of integers, then the system is 
system with interactions – an IL system. In this paper, we concentrate on the L systems 
without interactions (the systems where 0== nm ). These systems are denoted as 0L systems. 
L systems usually do not use any nonterminal symbols, the 0L systems, which use 
nonterminal symbols, are denoted as E0L systems (extended 0L systems). The productions of 
E0L system can be divided into several groups and in one derivation step only the productions 
from the same group can be used. These systems are denoted as ET0L systems (the group of a 
production is called table). In the following subsections, ET0L grammars, forbidding ET0L 
grammars and FET0L grammars with permitting conditions are described. 

2.1 ET0L GRAMMARS 

An ET0L grammar is a -tuple, 3+t ( )SPPTVG t ,,...,,, 1= , , where V, T and S are 

the total alphabet, the terminal alphabet 

1≥t
( )VT ⊂ , and the axiom ( )+−∈ TVS , respectively. 

Each  is a finite set of productions of the form , where  and . If 
 implies 

iP xa → Va∈ *Vx∈

iPxa ∈→ ε≠x  (ε  denotes an empty string) for all { }ti ,...,1∈ , G is said to be 
propagating (EPT0L grammar for short). 

Let , *, Vvu ∈ qaaau ...21= , qvvvv ...21= , uq = , Va j ∈ ,  and  is 
a sequence of productions of the form 

*Vv j ∈ qppp ,...,, 21

ijjj Pvap ∈→=  for all , for some 
. Then, u directly derives v according to the productions  through , denoted 

by 

qj ,...,1=
{ ti ,...,1∈ } 1p qp

qG pppvu ,..,, 21⇒ . 

In the standard manner, we define relations ,  and  ( ). The language of 
G, denoted by L(G), is defined as 

n
G⇒ +⇒G

*
G⇒ 0≥n

( ) { }wSTwGL G
** : ⇒∈= . 

Let  be an ET0L grammar. If ( SPPTVG t ,,...,,, 1= ) 1=t , G is called an E0L grammar. 

2.2 FORBIDDING ET0L GRAMMARS 
Forbidding ET0L systems are ET0L systems, whose productions have some attached 

strings, called forbidding conditions. These systems can make a derivation step only by using 
productions, whose forbidding conditions do not appear in the rewritten sentential form. The 
formal description of such systems follows.  

A forbidding ET0L grammar (FET0L grammar for short) is defined as a -tuple, 
, , where V, T and S have the same meanings as in ET0L grammar, 

and each  is a finite set of productions of the form

3+t
( )SPPTVG t ,,...,,, 1= 1≥t

iP ( )Fxa ,→ , where , , and a 
finite set  of forbidding conditions [2]. 

Va∈ *Vx∈
+⊆VF

Let , *, Vvu ∈ qaaau ...21= , qvvvv ...21= , uq = , Va j ∈ ,  and  is 
a sequence of productions 

*Vv j ∈ qppp ,...,, 21

( ) ijjjj PFvap ∈→= ,  for all qj ,...,1=  and some , 

such that  (  denotes the set of all nonempty substrings of u). 

{ }ti ,...,1∈

( ) ∅=∩
=U

q

j jFusub
1

)(usub

  



Then, u directly derives v according to  in G, denoted by qppp ,...,, 21 qG pppvu ,..,, 21⇒ . 

The language of G is defined as ( ) { }xSTxGL G
** : ⇒∈=  [2]. 

By analogy with ET0L grammars, if 1=t , then G is called an FE0L grammar. 

2.3 FET0L GRAMMARS WITH PERMITTING CONDITIONS 
These systems were derived from FE0L systems for the output system of the algorithm, 

which is presented in this paper. One permitting condition can replace many forbidding 
conditions in the systems, which are produced by the presented algorithm. Therefore, we have 
designed these grammars. Productions of these systems may have some attached strings, 
called permitting conditions. During the derivation step, permitting conditions from all used 
productions are stored in a multiset of permitting conditions. At the end of the derivation step, 
it is checked, whether the created string contains such substrings, which are in the multiset of 
permitting conditions. Here is the formal description of such system: 

FET0L system with permitting conditions is a 4+t -tuple, ( ),,,,...,,, 1 ZSPPTVG t=  
 where V is the total alphabet, T is the terminal alphabet 1≥t ( )VT ⊂  and S is the axiom 

. Each  is a finite set of productions of the form ( +−∈ TVS ) iP ( )DFxa ,,→ , where Va∈ , 
, and the finite sets ,  (of forbidding and permitting conditions). Z is 

a multiset of permitting conditions.  

*Vx∈ +⊆VF +⊆VD

Let , *, Vvu ∈ qaaau ...21= , qvvvv ...21= , uq = , Va j ∈ ,  and   is 
a sequence of productions 

*Vv j ∈ qppp ,...,, 21

( ) ijjjjj PDFvap ∈→= ,,  for all qj ,...,1=  and some , 

such that , . Then, u directly derives v, if 

{ }ti ,...,1∈

( ) ∅=∩
=U

q

j jFusub
1 U

q

j jDZ
1=

= ( ) ZZvsub =∩ , 

otherwise u is not derived by G.  

The language of G is defined as ( ) { }xSTxGL G
** : ⇒∈= . 

3 THE ALGORITHM FOR REDUCING THE NUMBER OF NONTERMINAL 
SYMBOLS IN FE0L SYSTEMS 

In this section the algorithm itself is described. The first subsection contains the formal 
description of the algorithm, the second subsection describes how the new system derivates 
strings and the last subsection describes the main ideas of the algorithm. 

3.1 THE REDUCTION OF FE0L SYSTEMS 

• Input: FE0L system  with more than 7 nonterminal symbols. ( sPTVG ,,,= )
)• Output: FE0L system  with permitting conditions with 7 nonterminal 

symbols { }. 
( ´´,,´, sPTVH =

XC,,2´,1´,0,1,0

• Algorithm: 

1. Define arbitrary injective homomorphism { }** 1,0: →Vh , such that ( ) εε =h , 

  



( ) { } { }21,0 nah ∈ , ( ) ( ) ( )αα hahah =  for all Va∈  and  and for *V∈α ( )⎣ ⎦1log += Vn  . 

2.  Define homomorphism { }** 1́´,0´: →Vh , which will generate for a specific string the 
same binary code as homomorphism , where symbols  will be substituted by  and 
symbols 1 by .  

h 0 0́
1́

3.  Set  and { } TXCV ∪= ,,2´,1´,0,1,0´ ( )Cshs =´ . 

4.  Find the set of productions , which will contain these productions: ´P

4.1 ( ) ( ) { } ( ) ( ){ }( ) ´´´,,´2 PahahXFhah ∈∪→ α  for all productions ( ) PFa ∈→ ,α  (where 
 and ) Va∈ *V∈α

4.2 ( ) { } ( ) ( ){ }( ) ´´´,,´2 PahahCaah ∈→  for all Ta∈  

4.3 { }( ) ´,, PCaa ∈∅→  for all Ta∈  

4.4 
( ) ( ) ( ) ( )
( ) ( ) ( ) ´

,,1́,,,0́,,´,11
,,´,00,,,,,,,,,

P
XXCCC

⊆
⎭
⎬
⎫

⎩
⎨
⎧

∅∅→∅∅→∅∅→
∅∅→∅∅→∅∅→∅∅→

εε
ε

 

The algorithm can be also used for ET0L and FET0L systems. In these systems we 
apply the step 4 of the algorithm on each table of productions of the input system. The new 
system has the same number of tables as the input system. 

3.2 DERIVATION OF STRING IN NEW SYSTEM 

When the system G generates the string  in n steps, then system H generates the 
same string in  steps. In first n steps the system H simulates the derivation in the original 
system by using productions described in 4.1. During this part of derivation, there is the 
nonterminal C at the end of the string. In the last step of this part of derivation, the binary 
code of string x is generated and the nonterminal C is rewritten to X (in this step we obtain 
sentential form: ). 

*Tx∈
2+n

( )Xxh

In the next step, the terminal symbols are generated from their binary codes by using 
productions described in 4.2 and nonterminal X is rewritten to ε . We obtain a string, where 
there is its doubled binary code ( ) ( )ahah ´´  before each terminal symbol. This step cannot be 
performed if the string contains binary code of some nonterminal symbol. This symbol can be 
rewritten with some production described in 4.1, but this production cannot be used because 
of nonterminal X which is contained in the string (X is one of the forbidding conditions in 
productions described in 4.1). 

In the last step, all symbols  and  are rewritten to 0́ 1́ ε . In this step the productions 
described in 4.3 are used. In this step we obtain the string x. The derivation can proceed, but 
we can use only the production described in 4.3, so the result of the following steps will be 
again the string x. 

3.3 MAIN IDEAS OF THE ALGORITHM 
For all symbols from the input system the binary code is created. The nonterminal 

symbol 2 is used as a separator of binary codes of symbols (in productions, in axiom and in 
forbidding conditions). Every binary code of a symbol (of input system) in sentential form is 
followed by the symbol 2. Therefore, we can substitute all productions from the input system 

  



with productions with symbol 2 on the left side. (The algorithm is designed for the context-
free systems, so there can be only one symbol on the left side of each production – terminal or 
nonterminal. Productions cannot be substituted with productions for binary codes of symbols, 
because they contain more than one symbol. For this reason, we use productions with symbol 
2 on the left side.) 

It is also necessary to ensure, that the production which will be used in the next 
derivation step corresponds to the production for the symbol which we try to rewrite. Because 
the new system contains many productions with symbol 2 on the left side, we have to 
distinguish these productions. We have to ensure the connection between the binary code of a 
symbol (from the original system) and the production with symbol 2 on the left side, which 
replaces the production from the input system.  

This requirement is reached in the new system by following steps: 

• we add productions , , 0́0→ 1́1→ ε→0́ , ε→1́ . When we obtain a binary code 
of a symbol  in sentential form, then in the next step, by using these productions, 

we obtain a binary code  and in the next step the code is reduced to an empty 
string 

( )ah a
( )ah´

• productions that form the input system are replaced by productions with symbol 2 on 
the left side and on the right side there is a binary code of the symbol , which was 
on the left side of the production in the input system in the form, and then the right side 
of the original production, where all symbols are replaced with their binary codes 

( )ah´

• we add permitting conditions to productions with symbol 2 on the left side. The 
conditions are of the form ( ) ( )ahah ´´ , where  is a symbol, which was on the left side 
of production in the input system 

a

By these steps, we can perform the connection between the symbols from the input 
system and productions with symbol 2 on the left side. The following example shows how the 
system works. 

4 CONCLUSIONS 

The algorithm for reducing the number of the nonterminal symbols in FE0L systems is 
introduced in this paper. The algorithm produces a new system, which generates the same 
language as the original system. The output system is FE0L (FET0L) system with permitting 
conditions, which contains only 7 nonterminal symbols. FE0L (FET0L) systems with 
permitting conditions are also presented in this paper. We designed these systems especially 
for our algorithm. The algorithm can be used for FE0L, FET0L, E0L and ET0L systems. The 
number of forbidding conditions in the input and the output system is the same. The output 
system is context-free as well as the input system. Only some productions of the output 
system contain one permitting condition.  
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