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ABSTRACT

This paper contains more examples to formerly introduced concept of formal lan-
guage equivalency. That is, for two models, there is a substitution by which we change
each string of every yield sequence in one model so that sequence ofs string resulting from
this change represents a yield sequence in the other equvalent model, these two models
closely simulates each other; otherwise they do not. In this paper are shown two cases of
such simulations.

1 INTRODUCTION

In the [1] was introduced quite new method of compraing two grammatical systems.
Before this paper there was almost vague comparations of grammars limited by similarity
of generated languages. This new approach comes with comparing not only generated
languages but also similarity of generating process.

Because we have many different transformations from one type of grammar to an-
other in the theory of formal languages, we sometimes want to describe similarity of such
converted grammars. On the second hand, we need to examine this similarity in the prac-
tice. For example we try to find some usable representation of some grammar for use in
a compiling system. We can do some transformations but we still want to achieve same
result in new grammar with almost same number of derivation steps and so on.

So, the concepts ofm-close simulationand some others were introduced in [1].
In the section 2 are recalled some well-known notions of the formal language theory.

Section 3 introduces new conversion from scattered context grammars to symbiotic E0L
grammars. Next section deals with description of derivation simulation of previous section.
Here are repeated some needed definitions of concepts of derivation similarity and showed
theorem about previous conversion. Section 5 includes proved results as a whole.



2 PRELIMINARIES

We assume that the reader is familiar with the language theory (see [2], [4], [6]).
LetV be an alphabet.V∗ denotes the free monoid generated byV under the operation

of concatenation. Letε be the unit ofV∗ andV+ = V∗−{ε}. Given a word,w ∈ V∗,
|w| represents the length ofw andalph(w) denotes the set of all symbols occuring inw.
Moreover,sub(w) denotes the set of all subwords ofw. Let R be a binary relation on a set
W. Instead ofu∈ R(v), whereu,v∈W, we writevRuin this paper.

A scattered context grammaris an ordered quadrupleG = (V,T,P,S), whereV, T,
and S are the total alphabet ofG, the set of terminalsT ⊆ V, and the axiomS∈ V −
T, respectively. P is a finite set of productions of the form(A1, . . . ,An) → (x1, . . . ,xn),
for somen≥ 1, whereAi ∈ V −T andxi ∈ V∗ form 1≤ i ≤ n. If p ∈ P is of the form
(A1,A2, . . . ,An) → (x1,x2, . . . ,xn), u = u1A1u2A2 . . .unAnun+1, v = u1x1u2x2 . . .unxnun+1

andui ∈ V∗, for i = 1,2, . . . ,n, thenu directly derivesv in G according top, denoted by
u ⇒G v[p] or, simplyu⇒ v. In a standard manner, we extend⇒G to ⇒n

G, wheren≥ 0,
and based on⇒n

G, we define⇒∗
G, which is transitive and reflexive closure of⇒. Let

S⇒∗
G x is called a successful derivation. The language ofG, L(G), is defined asL(G) ={

x : S⇒∗
G x,x∈ T∗}. For anyp∈P of the form(A1,A2, . . . ,An)→ (x1,x2, . . . ,xn), le f t(p)

means stringA1A2 . . .An andright(p) stringx1x2 . . .xn.
A symbiotic E0L grammar(see [3]) is a quadrupleG = (W,T,P,S), whereW, T,

andS are the set of generatorsW ⊆ (V ∪V2), the set of terminalsT ⊆ V, and the axiom
S∈V−T, respectively.P is a finite set of productions of the formA→ x, A∈V, x∈V∗.
The direct derivation relation is defined in the following way: letx,y∈W∗ such thatx =
a1a2 . . .an, ai ∈V, y = y1y2 . . .yn, yi ∈V∗, and productionsai → yi ∈ P for all i = 1, . . . ,n.
Then,x directly derivesy, x⇒G y. The language ofG is L(G) =

{
w∈ T∗ : S⇒∗

G w
}

.

3 SIMULATION OF SCATTERED CONTEXT GRAMMARS

Construction 1.

Input: A scattered context grammar,G = (V,T,P,S)

Output: A symbiotic E0L grammars,G′

Algorithm: At first, we introduce a new alphabet,V ′ = V ∪ {@,#,S′} ∪V ′′ ∪ T̃,V ′′ =
{〈i, j〉 : 0 < i ≤Card(P),0≤ j ≤ k} , T̃ = {ã : a∈ T}. Let τ be a homomorphism fromT
to T̃ such thatτ(a) = ã for all a∈ T. Define a languageW, overV ′ asW =V∪{@,#,S′}∪
T̃ ∪{〈i, j〉〈i, j〉 : 0 < i ≤Card(P),0≤ j ≤ k}. Then, construct a symbiotic E0L grammar
G′ = (W,T,P′,S′), where the set of productions is defined in the following way:

1. addS′→@S#,@→ ε and #→ ε to P′;

2. for every productionn:(A1,A2, . . . ,Ak) → (x1,x2, . . . ,xk) ∈ P add these rules toP′

(wheren is a label, 0<≤Card(P):

A1 → 〈n,0〉τ(x1)〈n,1〉
A2 → 〈n,1〉τ(x2)〈n,2〉

...
Ak → 〈n,k−1〉τ(xk)〈n,k〉



3. add @→@〈i,0〉 ,0 < i ≤Card(P) to P′;

4. add #→ 〈i,k〉#, toP′ for each productioni:(A1,A2, . . . ,Ak)→ (x1,x2, . . . ,xk) ∈ P;

5. for eachA ∈ V ∪ T̃ add productions of this form toP′: A→ 〈i, j〉A〈i, j〉 ,0 < i ≤
Card(P),0≤ j ≤ k;

6. add these productions toP′: 〈i, j〉 → ε,0 < i ≤Card(P),0≤ j ≤ k;

7. add productioña→ a for eacha∈ T to P′.

Theorem 1. Let G= (V,T,P,S) be a scattered context grammar. Let G′ be a symbiotic
E0L grammar constructed by Construction 1 with G as its input. Then, L(G) = L(G′).

4 DERIVATION SIMULATIONS

4.1 DEFINITIONS

Now we have to repeat some needed definitions. Definitions as a whole were intro-
duced in [1] and there can be found reasons of their existence and so on. Here we only
repeat their readings because they will be used in the following subsections.

Definition 1. A string-relation systemis a quadrupleΨ = (W,⇒,W0,WF), whereW is a
language,⇒ is a binary relation onW, W0 ⊆W is a set ofstart strings, andWF ⊆W is a
set offinal strings.

Every string,w ∈W, represents a 0-step string-relation sequence inΨ. For every
n≥ 1, a sequencew0,w1, . . .wn, wi ∈W, 0≤ i ≤ n, is ann-step string-relation sequence,
symbolically written asw0 ⇒ w1 ⇒ . . .⇒ wn, if for each 0≤ i ≤ n−1, wi ⇒ wi+1.

If there is a string-relation sequencew0 ⇒ w1 ⇒ . . . ⇒ wn, wheren≥ 0, we write
w0 ⇒n wn. Furthermore,w0 ⇒∗ wn means thatw0 ⇒n wn for somen≥ 0, andw0 ⇒+ wn

means thatw0 ⇒n wn for somen≥ 1. Obviously, from the mathematical point of view,
⇒+ and⇒∗ are the transitive closure of⇒ and the transitive and reflexive closure of⇒,
respectively.

Let Ψ = (W,⇒,W0,WF) be a string-relation system. A string-relation sequence inΨ,
u⇒∗ v, whereu,v∈W, is called ayield sequence, if u∈W0. If u⇒∗ v is a yield sequence
andv∈WF , u⇒∗ v is successful.

Let D(Ψ) andSD(Ψ) denote the set of all yield sequences and all successful yield
sequences inΨ, respectively.

Definition 2. Let Ψ = (W,⇒Ψ,W0,WF) andΩ = (W′,⇒Ω,W′
0,W

′
F) be two s-r systems,

and letσ be a substitution fromW′ to W. Furthermore, letd be a yield sequence inΨ of
the formw0 ⇒Ψ w1 ⇒Ψ . . . ⇒Ψ wn−1 ⇒Ψ wn, wherewi ∈W, 0≤ i ≤ n, for somen≥ 0.
A yield sequence,h, in Ω simulates d with respect toσ, symbolically written ash Bσ d, if
h is of the formy0 ⇒m1

Ω y1 ⇒m2
Ω . . . ⇒mn−1

Ω yn−1 ⇒mn
Ω yn, wherey j ∈W′, 0≤ j ≤ n, mk ≥ 1,

1≤ k≤ n, andwi ∈ σ(yi) for all 0≤ i ≤ n. If, in addition, there existsm≥ 1 such that
mk ≤ m for each 1≤ k≤ n, thenh m-closely simulates d with respect toσ, symbolically
written ash Bm

σ d.



Definition 3. Let Ψ = (W,⇒Ψ,W0,WF) andΩ = (W′,⇒Ω,W′
0,W

′
F) be two s-r systems,

and letσ be a substitution fromW′ to W. Let X ⊆ D(Ψ) andY ⊆ D(Ω). Y simulates X
with respect toσ, written asY Bσ X, if the following two conditions hold: for everyd ∈ X,
there ish∈Y such thath Bσ d and for everyh∈Y, there isd ∈ X such thath Bσ d.

Let m be a positive integer.Y m-closely simulates X with respect toσ, Y Bm
σ X,

provided that: for everyd ∈ X, there ish∈Y such thath Bm
σ d and for everyh∈Y, there

is d ∈ X such thath Bm
σ d.

Definition 4. Let Ψ = (W,⇒Ψ,W0,WF) andΩ = (W′,⇒Ω,W′
0,W

′
F) be two s-r systems. If

there exists a substitutionσ fromW′ toW such thatD(Ω) Bσ D(Ψ) andSD(Ω) Bσ SD(Ψ),
then Ω is said to beΨ’s derivation simulatorand successful-derivation simulator, re-
spectively. Furthermore, if there is an integer,m≥ 1, such thatD(Ω) Bm

σ D(Ψ) and
SD(Ω) Bm

σ SD(Ψ), Ω is called anm-close derivation simulatorandm-close successful-
derivation simulatorof Ψ, respectively. If there exists a homomorphismρ from W′ to
W such thatD(Ω) Bρ D(Ψ), SD(Ω) Bρ SD(Ψ), D(Ω) Bm

ρ D(Ψ), andSD(Ω) Bm
ρ SD(Ψ),

thenΩ is Ψ’s homomorphic derivation simulator, homomorphic successful-derivation sim-
ulator, m-close homomorphic derivation simulatorandm-close homomorphic successful-
derivation simulator, respectively.

4.2 DERIVATION SIMULATION OF SCATTERED CONTEXT GRAMMARS

Definition 5. Let G = (V,T,P,S) be a scattered context grammar. Let⇒G be the direct
derivation relation inG. For⇒G and everyl ≥ 0, set∆(⇒G, l) = {x ⇒G y : x ⇒G y ⇒i

G
w,x,y∈V∗,w∈ T∗, i +1 = l , i ≥ 0}.

Next, letG1 = (V1,T1,P1,S1) andG2 = (V2,T2,P2,S2) be scattered context grammars.
Let ⇒G1

and⇒G2
be the derivation relations ofG1 and G2, respectively. Letσ be a

substitution fromV2 to V1. G2 simulates G1 with respect toσ, D(G2) BD (G1) in symbols,
if there exists two natural numbersk, l ≥ 0 so that the following conditions hold:

1. Ψ1 = (V∗
1 ,⇒G1

,{S1},T∗
1 ) andΨ2 = (V∗

2 ,⇒Ψ2
,W0,WF) are string-relation systems

corresponding toG1 and G2, respectively, whereW0 = {x ∈ V∗
2 : S2 ⇒k

G2
x} and

WF = {x∈V∗
2 : x⇒l

G2
w,w∈ T∗

2 ,σ(w)⊆ T∗
1 };

2. relation⇒Ψ2
coincides with⇒G2

− ∆(⇒G2
, l);

3. D(Ψ2) Bσ D(Ψ1).

In case thatSD(Ψ2) Bσ SD(Ψ1), G2 simulates successful derivations of G1 with
respect toσ; in symbols,SD(G2) Bσ SD(G1).

Definition 6. Let G1 andG2 be scattered context grammars with total alphabetsV1 and
V2, terminal alphabetsT1 andT2, and axiomsS1 andS2, respectively. Letσ be a substitu-
tion from V2 to V1. G2 m-closely simulates G1 with respect toσ if D(G2) Bσ D(G1) and
there existsm≥ 1 such that the corresponding string-relation systemsΨ1 andΨ2 satisfy
D(Ψ2) Bm

σ D(Ψ1). In symbols,D(G2) Bm
σ D(G1).

Analogously,G2 m-closely simulates successful derivations of G1 with respect toσ,
denoted bySD(G2) Bm

σ SD(G1), if SD(Ψ2) Bm
σ SD(Ψ1) and there existsm≥ 1 such that

SD(G2) Bm
σ SD(G1).



Definition 7. Let G1 andG2 be two scattered context grammars. If there exists a substitu-
tion σ such thatD(G2) Bσ D(G1), thenG2 is said to beG1’s derivation simulator.

By analogy with Definition 7, the reader can also definehomomorphic, m-close, and
successful-derivation simulatorsof scattered context grammars.

Theorem 2. Let G= (V,T,P,S) be a scattered context grammar and G′ = (W,T,P′,S′) be
a symbiotic E0L grammar constructed by using Construction 1 with G as its input. Then,
there exists a homomorphism̃ω such that D(G′) B1

ω̃ D(G) and SD(G′) B1
ω̃ SD(G).

5 CONCLUSION

In this paper we have gained following results:
Theorems 1 and 2 show that for every scattered context grammarG = (V,T,P,S),

there exists a symbiotic E0L grammarG′ = (W′,T,P′,S′) such that

1. L(G) = L(G′);

2. G′ is a 1-close homomorphic derivation simulator ofG′;

3. G′ is a 1-close homomorphic successful-derivation simulator ofG;

4. To simulateG, G′ uses one initial derivation step(S′ ⇒G′ @S#) and one deriva-
tion step which removes auxiliary symbols(〈i,0〉〈i,0〉τ(t1)〈i,0〉 . . .〈i,k〉τ(tn)〈i,k〉
〈i,k〉 ⇒G′ t1t2 . . . tn : 0 < i ≤Card(P), t j ∈ T∗,1≤ j ≤ n,n≥ 0).

All theorems are given without proofs because of limited space. These proofs can be
obtained from author. With almost same aparatus we have confirmed similar results with
phrase-structured grammars.
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