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ABSTRACT 
Besides derivation and communication steps, a two-way PC grammar system can make 

a reduction step during which it reduces the right-hand side of a context-free production to its 
left hand-side. This paper proves that every non-unary recursively enumerable language is 
defined by a centralized two-way grammar system, Γ, with five components in a very 
economical way. Indeed, Γ’s master has only three nonterminals and one communication 
production; furthermore, it produces all sentential forms with no more than two occurrences 
of nonterminals. In addition, during every computation, Γ makes a single communication 
step. 

1 INTRODUCTION 

The formal language theory has intensively investigated various variants of PC 
grammar systems (see [10]), which consist of several components, represented by grammars. 
This paper introduces some variant of two-way PC grammar systems, which make three kinds 
of computational steps – derivation, reduction, and communication. More precisely, a two-
way PC grammar system, Γ, makes a derivation step as usual; that is, it rewrites the left-hand 
side of a production with its right-hand side. In a reduction step Γ rewrites the right-hand side 
with the left hand-side. Finally, Γ makes a communication step in a usual PC-grammar-
system way; in addition, however, after making this step, it changes the computational way 
from derivations to reductions and vise versa. 

This paper discusses the centralized form of two-way linear PC grammar systems 
working in a non-returning mode. That is, since they are centralized, only their first 
components, called the masters, can cause these systems to make a communication step. A 
non-returning mode means that after communication step, the components of grammar system 
continue to process the current string rather than return to their axioms. The present paper 
concentrates its discussion on their descriptional complexity because this complexity 
represents an intensively studied area of today’s formal language theory. 

This paper proves that the centralized two-way linear PC grammar systems characterize 
the family of non-unary recursively enumerable languages in a very economical way. Indeed, 

  



every non-unary recursively enumerable language is defined by a centralized two-way linear 
PC grammar system with one linear component and four regular component so that during 
every computation Γ makes a single communication step. In addition, Γ’s three-nonterminal 
master has only one production with a communication symbol and any of its sentential forms 
contains no more than two occurrences of nonterminals. 

2 DEFINITION 

Let n be a positive integer. A component of two-way PC grammar system is a 
quadruple, G = (N, T, P, S), where N and T are two disjoint alphabets. Symbols in N and T are 
referred to as nonterminal and terminals, respectively, and S ∈ N is the start symbol of G. P is 
a finite set of productions such that each r ∈ P has this form 

A →  x, where x ∈ (T ∪ N)* and A ∈ N. 

Let u, v ∈ (N ∪ T)
*
. For every A →  x ∈ P, write uAv d ⇒  uxv and uxv r ⇒  uAv; d and 

r stand for a direct derivation and a direct reduction, respectively. To express that G makes 
uAv d ⇒ uxv according to A →  x, write uAv d ⇒  uxv [A →  x]; uxv r ⇒  uAv [A →  x] have an 
analogical meaning in terms of r ⇒ . A two-way n-PC grammar system is an n + 1 tuple 

Γ = (Q, G1, …, Gn), 

where Q = {qi : i = 1, …, n}, whose members are called query symbols, and for all i = 1, 
…, n, Gi = (Q ∪ Ni, T, Pi, Si) is a component of two-way PC grammar system such that Q ∩ 
(Ni ∪ T) = ∅ (notice that each Gi has the same terminal alphabet, T); let q-Pi ⊆ Pi denote the 
set of all productions in Pi containing a query symbol. A configuration is an n-tuple of the 
form (x1, …, xn), where xi ∈ (Q ∪ Ni ∪ T)*, 1 ≤  i ≤  n. The start configuration, σ, is defined as 
σ = (S1, …, Sn). Let Θ denote the set of all configurations of Γ. For evey x ∈ Θ and i = 1, …, 
n, i-x denote its ith component – that is, if x = (x1, …, xi,…, xn), then i-x = xi. For every x 
∈Θ, define the mapping xθ over {i-x: 1 ≤  i ≤  n} as xθ(i-x) = z1z2... z|i-x| where for all 1 ≤  h ≤  
|i-x|, if for some qj ∈ Q, i = 1, …, n, sym(i-x, h) = qj and alph(j-x) ∩ Q = ∅, then zh = j-x; 
otherwise (that is, sym(i-x, h) ∉ Q or alph(j-x) ∩ Q ≠ ∅), zh = sym(i-x, h). 

• y d ⇒  x in G if i-y d ⇒  i-x in Gi or i-y = i-x with i-y, i-x ∈ T *, for all i = 1, …, n; 

• y r ⇒  x in G if i-y r ⇒  i-x in Gi or i-y = i-x with i-y, i-x ∈ {Si} ∪ T *, for all i = 1, …, n; 

• y q ⇒  x in G if i-x = θ(i-y) in G for all i = 1, …, n. 

Informally, Γ works in three computational modes – d ⇒ , r ⇒ , q ⇒ , which 
symbolically represent a direct derivation, reduction, and communication, respectively. Let l 
≥ 1, αj ∈Θ, 1 ≤  i ≤  l, and α0 l1 ⇒  α1 l2 ⇒  α2 … αl-1 ll ⇒  αl, where lm ∈ {d, r, q}, 1 ≤  m ≤  l; 
write α0 ⇒* αl if l1 = d and each lp ∈ {d, r, q}, 2 ≤  p ≤  l - 1, satisfies: 

• if lp = q then lp+1, lp-1 ∈ {d, r} and lp+1 ≠ lp-1 

• if lp ∈ {d, r} then lp+1 ∈ {q, lp} 

Informally, after making a communication step, Γ changes the computational mode 
from d to r and vise versa; after making a derivation or reduction step, it does not. Consider 
α0 ⇒* αl that consists of l direct computational steps, α0 l1 ⇒ α1 l2 ⇒ α2 … αl-1 ll ⇒ αl, 
satisfying the above properties. Set κ(α0 ⇒* αl) = {α0, α1, …, αl}; that is, κ(α0 ⇒* αl) 

  



denotes the set of all configurations occurring in α0 ⇒* αl . Furthermore, for each l = 1, …, n, 
set κ(i− α0 ⇒* i− αl) = { i− β: β ∈ κ(α0 ⇒* αl)}. Finally, for each h = 1, …, n, h-
computation(i− α0 ⇒* i− αl) denotes h-α0  l1 ⇒  h-α1 l2 ⇒  h-α2 … h-αl-1  ll ⇒  h-αl. The 
language of Γ, L(Γ), is defined as 

L(Γ) = { z ∈ T *: σ ⇒* α in Γ with z = del(1-α , S1), for some α ∈Θ } 

Informally, L(Γ) contains z ∈ T * if and only if there exists α ∈Θ such that σ ⇒* α in Γ 
and the deletion of each S1 in 1-α results in z. A computation σ  ⇒* α in Γ with del(1-α, S1) ∈ 
L(Γ) is said to be successful. 

The components of the linear two-way PC grammar system are simple linear grammars. 

For a two-way linear PC grammar system, Γ = (G1, …, Gn), we next  introduce some 
special notions. 

Finite index. Let σ ⇒* x be any successful computation in Γ, where x ∈Θ, and let i ∈ 
{1, …, n}. By i-index(σ ⇒* x), we denote the maximum number in length{keep(κ(i− σ ⇒* 
i− x), Ni). If for every successful computation σ ⇒* ξ in Γ, where ξ ∈Θ, there exists k ≥ 1 
such that i-index(σ ⇒* ξ) ≤  k, Gi is of a finite index. If Gi is of a finite index, index(Gi) 
denotes the minimum number h satisfying i-index(σ ⇒* ξ) ≤  h, for every successful 
computation σ ⇒* ϖ in Γ, where ϖ ∈Θ. By index(Gi) = ∞ , we express that Gi is not of a 
finite index. If Gj is of a finite index for all j = 1, …, n, Γ is of a finite index and index(Γ) 
denotes the minimum number g satisfying index(Gl) ≤  g, for all l = 1, …, n. By index(Γ) = ∞ , 
we express that Γ is not of a finite index. 

q-Degree. For σ ⇒* x in Γ, where x ∈Θ, q-degree(σ ⇒* x) denotes the number of 
communication steps (q ⇒ ) in σ ⇒* x. If for every computation σ ⇒* ξ in Γ, where ξ ∈Θ, 
there exists k ≥ 1 such that q-degree(σ ⇒* ξ) ≤  k, Γ is of a finite q-degree. If Γ is of a finite 
q-degree, q-degree(Γ) denotes the minimum number h satisfying q-degree(σ ⇒* ξ) ≤  h, for 
every computation σ ⇒* ξ in Γ; by q-degree(Γ) = ∞ , we express that Γ is not of a finite 
q-degree. 

Centralized Version. Γ is centralized if no query symbol occurs in any production of Pi 
in Gi = (Ni, Ti, Pi, Si), for all i = 2, …, n. In other words, only P1 can contain some query 
symbols, so G1, called the master of Γ, is the only component that can cause Γ to perform a 
communication step. 

3 MAIN RESULT 

This section proves that every non-unary recursively enumerable language is defined by 
a centralized two-way linear 5-PC grammar system, Γ = ({Q2, Q3, Q4, Q5}, G1, G2, G3, G4, 
G5) such that index(G1) = 2, index(G2) = index(G3) = index(G4) = index(G5) = 1, and q-
degree(Γ) = 1. As a result, index(Γ) = 2. In addition, its three-nonterminal master, G1, has 
only one production containing a query symbols. Moreover G2, G3, G4 and G5 are regular 
components or grammars. 

Lemma 1.  For every recursively enumerable language, L, there exists a left-extended 
queue grammar, Q, satisfying L(Q) = L. 

Proof. Recall that every recursively enumerable language is generated by a queue 
grammar (see [2]). Clearly, for every queue grammar, there exists an equivalent left-extended 

  



queue grammar.  Thus, this lemma holds.                                                            

Lemma 2 Let Q′ be a left-extended queue grammar.  Then, there exists a left-extended 
queue grammar, Q  = (V, T, W, F, s, R), such that L(Q′) = L(Q), W = X ∪ Y ∪ {1}, where X, Y, 
{1} are pairwise disjoint, and every (a, b, x, c) ∈ R satisfies either a ∈ V - T, b ∈ X, x ∈ (V - 
T)*, c ∈ X ∪ {1} or a ∈ V - T, b ∈ Y ∪ {1}, x ∈ T *, c ∈ Y. 

Proof:  See Lemma 1 in [3].          

Lemma 3 Let Q be a left-extended queue grammar such that card(alph(L(Q))) ≥ 2. 
Then, there exists a centralized linear two-way 5-PC grammar system, Γ = ({Q2, Q3, Q4, Q5}, 
G1, G2, G3, G4, G5), such that L(Γ) = L(Q), index(G1) = 2, index(G2) = index(G3) = index(G4) 
= index(G5) = 1, index(Γ) = 2. In addition, Γ’s master, G1 = ({Q2, Q3, Q4, Q5} ∪ N1, T, P1, S1), 
satisfies card(N1) = 3 and q-P1 = {A  →  Q4Q2Q3Q4Q5}. 

Proof. Let Q = (V, T, W, F, s, R) be a left-extended queue grammar such that 
card(alph(L(Q))) ≥ 2. Assume that {0, 1} ⊆ alph(L(Γ)) ∩ T. Furthermore, without any loss of 
generality, assume that Q satisfies the properties described in Lemma 2 and Corollary 3. 
Observe that there exist a positive integer, n, and an injection, ι, from VW to ({0, 1}n – 1n) so 
that ι remains an injection when its domain is extended to (VW)* in the standard way (after 
this extension, ι thus represent an injection from (VW)* to ({0, 1}n – 1n)*); a proof of this 
observation is simple and left to the reader. Based on ι, define the substitution, ν, from V to 
({0, 1}n – 1n) as ν(a) = {ι(aq) : q ∈ W} for every a ∈ V. Extend the domain of ν to V *. 
Furthermore, define the substitution, µ, from W to ({0, 1}n – 1n) as µ(q) = {reversal(ι(aq)) : 
a ∈ V} for every q ∈ W. Extend the domain of µ to W *. Set ο = 1n. 

Construction. Introduce a centralized two-way linear 5-PC grammar system, Γ = ({Q2, 
Q3, Q4, Q5}, G1, G2, G3, G4, G5), where G1 = (Q ∪ N1, T, P1, S1), G2 = (N2, T, P2, S2), G3 = 
(N3, T, P3, S3), G3 = (N3, T, P3, S3), G4 = (N4, T, P4, S4), G5 = (N5, T, P5, S5), N1 = {S1, A1, Y}, 
P1 = {S1 →  οA1, S1 →  οYο, A1 →  Q4Q2Q3Q4Q5} ∪ {A1 →  reversal(x)A1 : x ∈ ι(VW)} ∪ 
{Y →  xYx : x ∈ ι(VW)}, N4 = {S4, Y}, P4 = {S4 →  Y, Y →  Y}, N5 = {S5, A5} and P5 = {S5 →  
A5ο, A5 →  ε} ∪ {A5 →  A5x : x ∈ ι(VW)}. P2 and P3 are constructed as follows: 

1. if s = a0q0, where a0 ∈ V - T and q0 ∈ W - F, 

then add S2 →  u〈q0, 1〉 to P2 and S3 →  〈q0, 1〉t to P3, for all u ∈ ν(a0) and t ∈ µ(q0), 

2. if (a, q, y, p) ∈ R, where a ∈ V - T, p, q ∈ W - F, and y ∈ (V - T)*, 

then add 〈q, 1〉 →  u〈p, 1〉 to P2 and 〈q, 1〉 → 〈p, 1〉t to P3, for all u ∈ν(y) and t ∈µ(p), 

3. for every q ∈ W - F, add 〈q, 1〉 →  o〈q, 2〉 to P2 and 〈q, 1〉 →  〈q, 2〉 to P3, 

4. if (a, q, y, p) ∈ R, where a ∈ V - T, p, q ∈ W - F, y ∈ T *, 

then add 〈q, 2〉 →  y〈p, 2〉 to P2, 〈q, 2〉 →  〈p, 2〉t to P3, for all t ∈ µ(p), 

5. if (a, q, y, p) ∈ R, where a ∈ V - T, q ∈ W - F, y ∈ T *, and p ∈ F, 

then add 〈q, 2〉 →  y to P2, 〈q, 2〉 →  o to P3, 

and N2 and N3 contains all symbols occurring in P2 and P3, respectively, that are not 
in T. 

Theorem 5 Let L be a recursively enumerable language such that card(alph(L))) ≥ 2.  
Then, there exists a centralized two-way linear 5-PC grammar system, Γ = ({Q2, Q3, Q4, Q5}, 

  



G1, G2, G3, G4, G5), such that L(Γ) = L(Q), index(G1) = 2, index(G2) = index(G3) = index(G4) 
= index(G5) = 1, index(Γ) = 2, q-degree(Γ) = 1, and Γ’s master, G1 = ({Q2, Q3, Q4, Q5} ∪ N1, 
T, P1, S1) satisfies q-P1 = {A  →  Q4Q2Q3Q4Q5} and card(N1) = 3. 

Proof. This theorem follows from Lemmas 1, 2, and 3.      

Interesting properties. Observe other properties of investigated two-way linear PC 
grammar system. Examined two-way linear PC grammar system is consisted of five 
components. Four are regular grammars and only one component is linear grammar. 
Furthermore in derivation phase of computation are used only regular productions and in 
reduction phase of computation are used linear productions. 
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