
TWO–WAY LINEAR PC GRAMMAR SYSTEMS AND THEIR
DESCRIPTIONAL COMPLEXITY

Ing. Petr KALÁB, Doctoral Degree Programme (3)
Dept. of Information Systems, FIT, BUT

E-mail: kalabp@fit.vutbr.cz

Supervised by: Dr. Alexander Meduna

ABSTRACT
Besides derivation and communication steps, a two-way PC grammar system can make

a reduction step during which it reduces the right-hand side of a context-free production to its
left hand-side. This paper proves that every non-unary recursively enumerable language is
defined by a centralized two-way grammar system, Γ, with five components in a very
economical way. Indeed, Γ’s master has only three nonterminals and one communication
production; furthermore, it produces all sentential forms with no more than two occurrences
of nonterminals. In addition, during every computation, Γ makes a single communication
step.

1 INTRODUCTION

The formal language theory has intensively investigated various variants of PC
grammar systems (see [10]), which consist of several components, represented by grammars.
This paper introduces some variant of two-way PC grammar systems, which make three kinds
of computational steps – derivation, reduction, and communication. More precisely, a two-
way PC grammar system, Γ, makes a derivation step as usual; that is, it rewrites the left-hand
side of a production with its right-hand side. In a reduction step Γ rewrites the right-hand side
with the left hand-side. Finally, Γ makes a communication step in a usual PC-grammar-
system way; in addition, however, after making this step, it changes the computational way
from derivations to reductions and vise versa.

This paper discusses the centralized form of two-way linear PC grammar systems
working in a non-returning mode. That is, since they are centralized, only their first
components, called the masters, can cause these systems to make a communication step. A
non-returning mode means that after communication step, the components of grammar system
continue to process the current string rather than return to their axioms. The present paper
concentrates its discussion on their descriptional complexity because this complexity
represents an intensively studied area of today’s formal language theory.

This paper proves that the centralized two-way linear PC grammar systems characterize
the family of non-unary recursively enumerable languages in a very economical way. Indeed,

every non-unary recursively enumerable language is defined by a centralized two-way linear
PC grammar system with one linear component and four regular component so that during
every computation Γ makes a single communication step. In addition, Γ’s three-nonterminal
master has only one production with a communication symbol and any of its sentential forms
contains no more than two occurrences of nonterminals.

2 DEFINITION

Let n be a positive integer. A component of two-way PC grammar system is a
quadruple, G = (N, T, P, S), where N and T are two disjoint alphabets. Symbols in N and T are
referred to as nonterminal and terminals, respectively, and S ∈ N is the start symbol of G. P is
a finite set of productions such that each r ∈ P has this form

A → x, where x ∈ (T ∪ N)* and A ∈ N.

Let u, v ∈ (N ∪ T)
*
. For every A → x ∈ P, write uAv d ⇒ uxv and uxv r ⇒ uAv; d and

r stand for a direct derivation and a direct reduction, respectively. To express that G makes
uAv d ⇒ uxv according to A → x, write uAv d ⇒ uxv [A → x]; uxv r ⇒ uAv [A → x] have an
analogical meaning in terms of r ⇒ . A two-way n-PC grammar system is an n + 1 tuple

Γ = (Q, G1, …, Gn),

where Q = {qi : i = 1, …, n}, whose members are called query symbols, and for all i = 1,
…, n, Gi = (Q ∪ Ni, T, Pi, Si) is a component of two-way PC grammar system such that Q ∩
(Ni ∪ T) = ∅ (notice that each Gi has the same terminal alphabet, T); let q-Pi ⊆ Pi denote the
set of all productions in Pi containing a query symbol. A configuration is an n-tuple of the
form (x1, …, xn), where xi ∈ (Q ∪ Ni ∪ T)*, 1 ≤ i ≤ n. The start configuration, σ, is defined as
σ = (S1, …, Sn). Let Θ denote the set of all configurations of Γ. For evey x ∈ Θ and i = 1, …,
n, i-x denote its ith component – that is, if x = (x1, …, xi,…, xn), then i-x = xi. For every x
∈Θ, define the mapping xθ over {i-x: 1 ≤ i ≤ n} as xθ(i-x) = z1z2... z|i-x| where for all 1 ≤ h ≤
|i-x|, if for some qj ∈ Q, i = 1, …, n, sym(i-x, h) = qj and alph(j-x) ∩ Q = ∅, then zh = j-x;
otherwise (that is, sym(i-x, h) ∉ Q or alph(j-x) ∩ Q ≠ ∅), zh = sym(i-x, h).

• y d ⇒ x in G if i-y d ⇒ i-x in Gi or i-y = i-x with i-y, i-x ∈ T *, for all i = 1, …, n;

• y r ⇒ x in G if i-y r ⇒ i-x in Gi or i-y = i-x with i-y, i-x ∈ {Si} ∪ T *, for all i = 1, …, n;

• y q ⇒ x in G if i-x = θ(i-y) in G for all i = 1, …, n.

Informally, Γ works in three computational modes – d ⇒ , r ⇒ , q ⇒ , which
symbolically represent a direct derivation, reduction, and communication, respectively. Let l
≥ 1, αj ∈Θ, 1 ≤ i ≤ l, and α0 l1 ⇒ α1 l2 ⇒ α2 … αl-1 ll ⇒ αl, where lm ∈ {d, r, q}, 1 ≤ m ≤ l;
write α0 ⇒* αl if l1 = d and each lp ∈ {d, r, q}, 2 ≤ p ≤ l - 1, satisfies:

• if lp = q then lp+1, lp-1 ∈ {d, r} and lp+1 ≠ lp-1

• if lp ∈ {d, r} then lp+1 ∈ {q, lp}

Informally, after making a communication step, Γ changes the computational mode
from d to r and vise versa; after making a derivation or reduction step, it does not. Consider
α0 ⇒* αl that consists of l direct computational steps, α0 l1 ⇒ α1 l2 ⇒ α2 … αl-1 ll ⇒ αl,
satisfying the above properties. Set κ(α0 ⇒* αl) = {α0, α1, …, αl}; that is, κ(α0 ⇒* αl)

denotes the set of all configurations occurring in α0 ⇒* αl . Furthermore, for each l = 1, …, n,
set κ(i− α0 ⇒* i− αl) = { i− β: β ∈ κ(α0 ⇒* αl)}. Finally, for each h = 1, …, n, h-
computation(i− α0 ⇒* i− αl) denotes h-α0 l1 ⇒ h-α1 l2 ⇒ h-α2 … h-αl-1 ll ⇒ h-αl. The
language of Γ, L(Γ), is defined as

L(Γ) = { z ∈ T *: σ ⇒* α in Γ with z = del(1-α , S1), for some α ∈Θ }

Informally, L(Γ) contains z ∈ T * if and only if there exists α ∈Θ such that σ ⇒* α in Γ
and the deletion of each S1 in 1-α results in z. A computation σ ⇒* α in Γ with del(1-α, S1) ∈
L(Γ) is said to be successful.

The components of the linear two-way PC grammar system are simple linear grammars.

For a two-way linear PC grammar system, Γ = (G1, …, Gn), we next introduce some
special notions.

Finite index. Let σ ⇒* x be any successful computation in Γ, where x ∈Θ, and let i ∈
{1, …, n}. By i-index(σ ⇒* x), we denote the maximum number in length{keep(κ(i− σ ⇒*
i− x), Ni). If for every successful computation σ ⇒* ξ in Γ, where ξ ∈Θ, there exists k ≥ 1
such that i-index(σ ⇒* ξ) ≤ k, Gi is of a finite index. If Gi is of a finite index, index(Gi)
denotes the minimum number h satisfying i-index(σ ⇒* ξ) ≤ h, for every successful
computation σ ⇒* ϖ in Γ, where ϖ ∈Θ. By index(Gi) = ∞ , we express that Gi is not of a
finite index. If Gj is of a finite index for all j = 1, …, n, Γ is of a finite index and index(Γ)
denotes the minimum number g satisfying index(Gl) ≤ g, for all l = 1, …, n. By index(Γ) = ∞ ,
we express that Γ is not of a finite index.

q-Degree. For σ ⇒* x in Γ, where x ∈Θ, q-degree(σ ⇒* x) denotes the number of
communication steps (q ⇒) in σ ⇒* x. If for every computation σ ⇒* ξ in Γ, where ξ ∈Θ,
there exists k ≥ 1 such that q-degree(σ ⇒* ξ) ≤ k, Γ is of a finite q-degree. If Γ is of a finite
q-degree, q-degree(Γ) denotes the minimum number h satisfying q-degree(σ ⇒* ξ) ≤ h, for
every computation σ ⇒* ξ in Γ; by q-degree(Γ) = ∞ , we express that Γ is not of a finite
q-degree.

Centralized Version. Γ is centralized if no query symbol occurs in any production of Pi
in Gi = (Ni, Ti, Pi, Si), for all i = 2, …, n. In other words, only P1 can contain some query
symbols, so G1, called the master of Γ, is the only component that can cause Γ to perform a
communication step.

3 MAIN RESULT

This section proves that every non-unary recursively enumerable language is defined by
a centralized two-way linear 5-PC grammar system, Γ = ({Q2, Q3, Q4, Q5}, G1, G2, G3, G4,
G5) such that index(G1) = 2, index(G2) = index(G3) = index(G4) = index(G5) = 1, and q-
degree(Γ) = 1. As a result, index(Γ) = 2. In addition, its three-nonterminal master, G1, has
only one production containing a query symbols. Moreover G2, G3, G4 and G5 are regular
components or grammars.

Lemma 1. For every recursively enumerable language, L, there exists a left-extended
queue grammar, Q, satisfying L(Q) = L.

Proof. Recall that every recursively enumerable language is generated by a queue
grammar (see [2]). Clearly, for every queue grammar, there exists an equivalent left-extended

queue grammar. Thus, this lemma holds.

Lemma 2 Let Q′ be a left-extended queue grammar. Then, there exists a left-extended
queue grammar, Q = (V, T, W, F, s, R), such that L(Q′) = L(Q), W = X ∪ Y ∪ {1}, where X, Y,
{1} are pairwise disjoint, and every (a, b, x, c) ∈ R satisfies either a ∈ V - T, b ∈ X, x ∈ (V -
T)*, c ∈ X ∪ {1} or a ∈ V - T, b ∈ Y ∪ {1}, x ∈ T *, c ∈ Y.

Proof: See Lemma 1 in [3].

Lemma 3 Let Q be a left-extended queue grammar such that card(alph(L(Q))) ≥ 2.
Then, there exists a centralized linear two-way 5-PC grammar system, Γ = ({Q2, Q3, Q4, Q5},
G1, G2, G3, G4, G5), such that L(Γ) = L(Q), index(G1) = 2, index(G2) = index(G3) = index(G4)
= index(G5) = 1, index(Γ) = 2. In addition, Γ’s master, G1 = ({Q2, Q3, Q4, Q5} ∪ N1, T, P1, S1),
satisfies card(N1) = 3 and q-P1 = {A → Q4Q2Q3Q4Q5}.

Proof. Let Q = (V, T, W, F, s, R) be a left-extended queue grammar such that
card(alph(L(Q))) ≥ 2. Assume that {0, 1} ⊆ alph(L(Γ)) ∩ T. Furthermore, without any loss of
generality, assume that Q satisfies the properties described in Lemma 2 and Corollary 3.
Observe that there exist a positive integer, n, and an injection, ι, from VW to ({0, 1}n – 1n) so
that ι remains an injection when its domain is extended to (VW)* in the standard way (after
this extension, ι thus represent an injection from (VW)* to ({0, 1}n – 1n)*); a proof of this
observation is simple and left to the reader. Based on ι, define the substitution, ν, from V to
({0, 1}n – 1n) as ν(a) = {ι(aq) : q ∈ W} for every a ∈ V. Extend the domain of ν to V *.
Furthermore, define the substitution, µ, from W to ({0, 1}n – 1n) as µ(q) = {reversal(ι(aq)) :
a ∈ V} for every q ∈ W. Extend the domain of µ to W *. Set ο = 1n.

Construction. Introduce a centralized two-way linear 5-PC grammar system, Γ = ({Q2,
Q3, Q4, Q5}, G1, G2, G3, G4, G5), where G1 = (Q ∪ N1, T, P1, S1), G2 = (N2, T, P2, S2), G3 =
(N3, T, P3, S3), G3 = (N3, T, P3, S3), G4 = (N4, T, P4, S4), G5 = (N5, T, P5, S5), N1 = {S1, A1, Y},
P1 = {S1 → οA1, S1 → οYο, A1 → Q4Q2Q3Q4Q5} ∪ {A1 → reversal(x)A1 : x ∈ ι(VW)} ∪
{Y → xYx : x ∈ ι(VW)}, N4 = {S4, Y}, P4 = {S4 → Y, Y → Y}, N5 = {S5, A5} and P5 = {S5 →
A5ο, A5 → ε} ∪ {A5 → A5x : x ∈ ι(VW)}. P2 and P3 are constructed as follows:

1. if s = a0q0, where a0 ∈ V - T and q0 ∈ W - F,

then add S2 → u〈q0, 1〉 to P2 and S3 → 〈q0, 1〉t to P3, for all u ∈ ν(a0) and t ∈ µ(q0),

2. if (a, q, y, p) ∈ R, where a ∈ V - T, p, q ∈ W - F, and y ∈ (V - T)*,

then add 〈q, 1〉 → u〈p, 1〉 to P2 and 〈q, 1〉 → 〈p, 1〉t to P3, for all u ∈ν(y) and t ∈µ(p),

3. for every q ∈ W - F, add 〈q, 1〉 → o〈q, 2〉 to P2 and 〈q, 1〉 → 〈q, 2〉 to P3,

4. if (a, q, y, p) ∈ R, where a ∈ V - T, p, q ∈ W - F, y ∈ T *,

then add 〈q, 2〉 → y〈p, 2〉 to P2, 〈q, 2〉 → 〈p, 2〉t to P3, for all t ∈ µ(p),

5. if (a, q, y, p) ∈ R, where a ∈ V - T, q ∈ W - F, y ∈ T *, and p ∈ F,

then add 〈q, 2〉 → y to P2, 〈q, 2〉 → o to P3,

and N2 and N3 contains all symbols occurring in P2 and P3, respectively, that are not
in T.

Theorem 5 Let L be a recursively enumerable language such that card(alph(L))) ≥ 2.
Then, there exists a centralized two-way linear 5-PC grammar system, Γ = ({Q2, Q3, Q4, Q5},

G1, G2, G3, G4, G5), such that L(Γ) = L(Q), index(G1) = 2, index(G2) = index(G3) = index(G4)
= index(G5) = 1, index(Γ) = 2, q-degree(Γ) = 1, and Γ’s master, G1 = ({Q2, Q3, Q4, Q5} ∪ N1,
T, P1, S1) satisfies q-P1 = {A → Q4Q2Q3Q4Q5} and card(N1) = 3.

Proof. This theorem follows from Lemmas 1, 2, and 3.

Interesting properties. Observe other properties of investigated two-way linear PC
grammar system. Examined two-way linear PC grammar system is consisted of five
components. Four are regular grammars and only one component is linear grammar.
Furthermore in derivation phase of computation are used only regular productions and in
reduction phase of computation are used linear productions.

ACKNOWLEDGMENTS
This work was supported by the GAČR grant 201/04/0441.

REFERENCES
[1] Csuhaj-Varju, E.: Cooperating grammar systems. Power and Parameters, LNCS 812,

Springer, Berlin, 67-84, 1994

[2] Kleijn, H. C. M., Rozenberg, G.: On the Generative Power of Regular Pattern
Grammars, Acta Informatica 20, 391-411, 1983

[3] Meduna, A.: Simultaneously One-Turn Two-Pushdown Automata, International Journal
of Computer Mathematics 80, 679-687, 2003.

[4] Meduna, A.: Two-Way Metalinear PC Grammar Systems and Their Descriptional
Complexity, Acta Cybernetica 2003, US, s. 126-137, ISSN 0324-721X

[5] Kaláb, P.: A Two-Way PC Grammar Systems Based on Regular Grammars, In:
Proceedings of 10th Conference and Competition STUDENT EEICT 2004, Brno, CZ,
FIT VUT, 2004, s. 252-256, ISBN 80-214-2635-7

[6] Vaszil, G.: On simulating Non-returning PC grammar systems with returning systems,
Theoretical Computer Science (209) 1-2, 319-329, 1998

[7] Salomaa, A.: Formal Languages, Academic Press, New York, 1973

[8] Paun, Gh. and Santean, L.: Further Remars about parallel communicating grammar
systems, International Journal of Computer Mathematics 34, 187-203, 1990

[9] Paun, Gh. and Santean, L.: Parallel communicating grammar systems: the regular case,
Ann. Univ. Buc., Ser. Matem.-Inform. 38, 55-63, 1989

[10] Csuhaj-Varju, E., Dassow, J., Kelemen, J., Paun, Gh.: Grammar Systems: A
Grammatical Approach to Distribution and Cooperation, Gordon and Breach, London,
1994

	INTRODUCTION
	DEFINITION
	MAIN RESULT

