
PIEZOCERAMIC SENSOR: BASIC NOTES FOR FINITE 
ELEMENT MODEL 

Ing. Petr SEDLÁK, Doctoral Degree Programme (2) 
Dept. of Physics, FEEC, BUT 

E-mail: xsedla49@stud.feec.vutbr.cz 

Ing. Štěpán HEFNER, Doctoral Degree Programme (2) 
Dept. of Physics, FEEC, BUT 

E-mail: xhefne00@stud.feec.vutbr.cz 

Supervised by: Prof. Josef Šikula 

ABSTRACT 
The positive reasons to use simulation of piezoelectric devices, especially finite element 

method (FEM), are presented. Basic ideas of finite element method (FEM) for solving 
the problem of anisotropic piezoelectric media are mentioned. The simulation as an 
axisymmetric task is mentioned as well. 

1 INTRODUCTION 

Piezoelectric materials are widely used in electromechanical sensors and actuators such 
as robotic sensors, ultrasonic transducers for medical imaging and nondestructive testing 
(NDT). In the past, the development of electroacoustic transducers was primarily based on 
trial and error, which is time-consuming and therefore expensive. In computer age, 
computational power can be employed.  The main purposes of computer simulations in 
transducer development are [1]: 

• optimization of transducer design without time-consuming experiments, 

• deeper insight into the wave propagation in piezoelectric solids. 

The models commonly used to simulate the mechanical and electrical behavior of 
piezoelectric transducers generally introduce simplifying assumptions that are often invalid 
for actual design. The geometries of practical transducer are often two dimensional (2D) or 
three dimensional (3D). The most popular models, such as Manson’s model or 
the KLM model are only one dimensional (1D). For the 2D and 3D simulation 
of piezoelectric media the complete set of fundamental equations governing piezoelectric 
media has to be solved. The finite difference or finite element are however sufficiently 
general to handle these differential equations. The finite element method was preferred 
because it is capable of handling complex geometries. 

  



2 THEORY 

The matrix equations relating mechanical and electrical quantities in piezoelectric media 
are the basis for the derivation of the finite element model [1, 2]: 
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T vector of mechanical stresses 
S vector of mechanical strains 
E vector of electric field 
D vector of dielectric displacement 
cE mechanical stiffness matrix for constant electric field E 
εS permittivity matrix for constant mechanical strain S 
e piezoelectric matrix, [e]T transposed 

The electric field E is related to electrical potential φ by  

 φgrad−=E  ( 2 ) 

and the mechanical strain S to the mechanical displacement u in the Cartesian coordinates by  
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The elastic behavior of piezoelectric media is governed by Newton’s law:  

  ( 4 ) 22 / tdiv ∂∂= uT ρ

where ρ is density of piezoelectric medium, whereas the electrical behavior is described by 
Maxwell’s equation considering that piezoelectric media are insulating (no free volume 
charge): 

 .0=Ddiv  ( 5 ) 

Equations (1)–(6) constitute a complete set of differential equations which can be 
solved with appropriate mechanical (displacements and forces) and electrical (potential and 
charge) boundary conditions. An equivalent description of above boundary value problem is 
Hamilton’s variational principle as extended to piezoelectric media 

 ( )∫ =+ 0dtWLδ  ( 6 ) 

where the operator d denotes first-order variation and the Lagrangian term L is determined by 
energies available in piezoelectric medium and W is the virtual work of external mechanical 
and electrical forces. 

In the finite element method the body to be computed is subdivide into small discrete 
elements, the so called finite elements. The mechanical displacement u and forces f as well as 
the electrical potential φ and charge q are determined at the nodes of these elements. The 
values of these mechanical and electrical quantities at an arbitrary position on the element are 
given by a linear combination of polynomial interpolation function N(x, y, z) and the nodal 
point values of these quantities as coefficient. For an element with n nodes (nodal 
coordinates: (xi, yi, zi); i = 1, 2 …, n) the continuous displacement function u(x, y, z) (vector 

  



of order three). For example can be evaluated from its discrete nodal point vectors as follows 
(the quantities with “^” are the nodal point values of one element): 

 ),,(ˆ),,(),,( iiiu zyxzyxzyx uNu =  ( 7 ) 

where  is the vector of nodal point displacements and Nû u is is the interpolation function 
for the displacement. 

All other mechanical and electrical quantities x are similarly interpolated with appropriate 
interpolation functions Nx. With the interpolation functions for the displacement (Nu) and the 
electrical potential (Nφ), (2) and (3) can be written: 
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The substitution of the polynomial interpolation function into (7) yields a set of linear 
differential equations that describe one single piezoelectric finite element. 
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where are vectors of nodal velocities, accelerations, kuu ˆ,ˆ &&& uu is mechanical stiffness matrix, 
dm is mechanical damping matrix, kuφ is piezoelectric coupling matrix, kφφ is dielectric 
stiffness matrix, m is mass matrix, f is mechanical forces and q is electrical charges. 

Each element of the mesh is connected to its neighboring elements at the global nodes 
and the displacement is continuous from one element to the next. The element degrees of 
freedom (DOF) (u , ) are related to the global DOF (U, Φ) by the mean of the localization. 
The Hamilton’s principle (7) must be verified for the whole structure, which results in 
(by summation of the contribution from each finite element). 
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Couple the mechanical variables U and the electrical potentials Φ; F represents the 
external forces applied to the structure and Q the electric charges brought to the electrodes. 

3 AXISYMMETRIC ANALYSIS 

Note, that the shape of designing piezoceramic sensors is generally cylindrical. The 
requirements of computing power are decreased extremely, if task is defined like as an 
axisymmetric problem. For simplicity only mechanical part of problem is mentioned in detail. 
The problem of stress distribution in bodies of revolution (axisymmetric solids) under 
axisymmetric loading is of our considerable interest. The mathematical problems presented 
are very similar to those of plane stress and plane strain, the situation is two dimensional [2]. 
By symmetry, the two components of displacements in any plane section of the body along its 
axis of symmetry define completely the state of strain and, therefore, the state of stress. Such 
a crosssection is shown in fig. 1. If r and z denotes respectively the radial and axial 
coordinates of a point, with u and v being the corresponding displacements u. 

  



 
Fig. 1: Element of axisymmetric solid 

The volume of material associated with an ‘element’ is now that of a body of revolution 
indicated in fig. 2., and all integrations have to be referred to this. In plane stress or strain 
problems it was shown [2] that internal work was associated with three strain components in 
the coordinate plane, the stress component normal to this plane not being involved due to zero 
values of either the stress or the strain. 

 
Fig. 2: Axisymmetric strain and stresses 

In the axisymmetrical situation any radial displacement automatically induces a strain in 
the circumferential direction, and as the stresses in this direction are certainly non-zero, this 
fourth component of strain and of the associated stress has to be considered. Here lies the 
essential difference in the treatment of the axisymmetric situation. 

As already mentioned, four components of strain have now to be considered. These are, 
in fact, all the non-zero strain components possible in an axisymmetric deformation. The 
strain vector defined below lists the strain components involved and defines them in terms of 
the displacements of a point. Using the displacement functions for i-node of element, then 
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For a linear hyperelastic material, and ignoring thermal and prestress effects, the most general 
equation consistent with axisymmetry takes the form [3]: 
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To retain axisymmetry, the cross-coupling between the shear strain and hoop stress must 
vanish. Consequently c34 = c43 = 0. 

4 CONCLUSION 

A finite-element calculation schema for 2D and 3D simulation of anisotropic 
piezoceramics and its modification for axisymmetric problem are presented. This 
finite-element method allows the solution of numerous problems encountered in piezoelectric 
transducer design. One of the main problems is the simultaneous appearance of various 
vibrational modes with quite different physical characteristics. The simulations allow a deeper 
understanding of the physical mechanisms of acoustic wave propagation in piezoelectric 
sensors. 

Such simulations are used to optimize sensor design with respect to bandwidth, 
sensitivity and signal to noise ratio. Notes, which are mentioned in this paper, were used to 
develop own algorithm of finite element method. The reason is to understand noise influence 
on geometry of sensors and mechanical vibration influence on the electrical impedance 
spectrum. The algorithm is under development in MATLAB. The results are compared with 
ANSYS. 
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