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ABSTRACT 
This work discusses the properties of the Bragg grating used for semiconductor laser 

stabilization at wavelength about λ = 760 nm. The main point is reflection and band width 
analyze in dependence of grating dimensions and material properties. The same principal is 
used in optical band pass for telecommunication systems witch works at wavelength about 
λ = 1550 nm and λ = 1300 nm. 

1 INTRODUCTION 

Fiber Bragg grating are widely used in many optical systems as band filters, dispersion 
compensators, in-fiber sensors or fiber grating lasers and amplifiers. The principle of the fiber 
grating is in core refractive index modulation. The modulation is along the fiber axis creating 
periodic structure of refractive index change, δn. The refractive index change is accomplished 
e.g. by UV laser irradiation of photosensitive fiber core. In the most case, photosensitivity of 
fiber is due to presence of Ge in Ge-doped fiber core. Refractive index change is 
approximately 1x10-4 for high germanium doped fibers (10-30 mol%) [1]. A lot of techniques 
to increase fiber photosensitivity in Ge-doped and Ge-free fibers were found. More about 
these techniques can be found in [1, 2]. 

2 FIBER BRAGG GRATINGS THEORY 

It is important to know the term “uniform fiber Bragg grating”. A grating is a device 
that periodically modifies the phase or the intensity of a wave reflected on, or transmitted 
through, it [2]. The propagating wave is reflected, if its wavelength equals Bragg resonance 
wavelength, λBragg, in the other case is transmitted. The uniform means that the grating period, 
Λ, and the refractive index change, δn, are constant over whole length of the grating. The 
equation relating the grating spatial periodicity and the Bragg resonance wavelength is given 
by [1, 2]: 

 Λ= effBragg n2λ  ( 1 ) 

where neff is effective mode index. 

  



A typical layout of uniform fiber Bragg gratings with input and output signal indicated 
is shown on fig. 1. 

 
Fig. 1: Uniform fiber Bragg grating [2] 

3 FUNDAMENTAL BRAGG GRATINGS PROPERTIES 

The simulation of spectral properties is necessary to find optimal grating dimension. In 
all calculations was considered SG682 fiber with the core diameter 1.8 µm, core refractive 
index 1.47 and cladding refractive index 1.457. Reason for simulation grating with SG682 is 
that we already have this fiber for real grating fabrication. The refractive index change 
depends also on UV exposition time. Consequently simulations were made for four possible 
values. All calculations were made in Matlab software using the equations mentioned bellow. 

As was said, Bragg resonance wavelength depends on grating period, Λ, and effective 
mode index, neff. The fiber effective mode index depends on the propagation constant, β, and 
on the vacuum wave number, k; k = 2π/λ, where λ is wavelength: 

 
k

neff
β

=  ( 2 ) 

Because the propagation constant calculation needs solution of Bessel functions and is 
relatively complicated there was used approximated expression valid for a weakly guiding 
singlemode step index fiber, given by [2]: 

 2
22

2
22 )996.01428.1(

4
−+≅ V

r
nn cleff π

λ      for 1.5 ≤ V ≤ 2.4 ( 3 ) 

where V is fiber normalized frequency, 222
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λ
π , r is core radius, nc and ncl 

are core and cladding refractive indexes. 

In the most cases, uniform grating can be represented as a sinusoidal modulation of 
refractive index, n(z), through the fiber core given by: 
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where nc is core refractive index, δn is amplitude of core index change, z is fiber axial 

  



direction and Λ is grating period. 

Using the coupled-mode theory analytical description, the reflection properties of Bragg 
grating may be obtained. The reflection of uniform grating is given by [3]: 
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where R(L, λ) is reflectivity as function of grating length, L, and wavelength, λ, Ω is coupling 
coefficient, ∆k = β – π/Λ is detuning wave vector, β is propagation constant and 

22 ks ∆−Ω= . The coupling coefficient, Ω, for the sinusoidal refractive index modulation is 
given by: 
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where η(V) is function of fiber V parameter and is, approximately, η(V) = 1 – 1/V2. 

 
Fig. 2: Reflectivity against wavelength, calculated for grating length 2.5mm and 

δn = 5x10-4 in SG682 fiber 

The spectral characteristic on Fig. 2 was simulated in Matlab using equation (5). It is 
clear, that the spectral properties of the uniform grating are similar to sinc function. The 
bandwidth of the grating is considered between the zeroes of the main peak. The bandwidth 
and the peak reflectivity are dependent on the grating length and the refractive index change 
as is shown bellow. 

For the Bragg resonance wavelength the propagation constant β = 2πneff/λBragg is equal 
to π/Λ = π/(λBragg/2neff) = 2πneff/λBragg and detuning wave vector ∆k = 0. For this wavelength 
the reflectivity reaches its maximum, Rpeak, and equation (5) became to: 
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Fig. 3: Peak reflectivity as function of grating length, calculated for SG682 fiber, 

parameter δn 

Fig. 3 shows the dependence between peak reflectivity, Rpeak, as a function of the 
grating length and refractive index change. It is clear, that it is possible to reach the same peak 
reflectivity with shorter gratings using fiber with high δn values. That is very useful to find 
effective length of grating. 

Dependence between the grating length, refractive index change and the bandwidth is 
approximately given by [2]: 
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Fig. 4: Full bandwidth as function of grating length, calculated for SG682 fiber, 

parameter δn 

  



As is shown on fig. 4, for grating shorter than approximately 1mm a small variation in 
the length induces a big variation in the bandwidth. On the other side, grating longer than 
approximately 5 mm is almost not affected by length variations. The magnitude of the 
refractive index change has a very low influence on the bandwidth for short gratings. For long 
grating the bandwidth is approximately linearly dependent on refractive index change. 

4 CONCLUSION 

The results of fiber Bragg grating simulation shows that spectral properties of grating 
depends the most on grating length, L, and refractive index change, δn. Dependence between 
grating length, refractive index change and bandwidth to reach same peak reflectivity are: 

• longer grating with low δn value cause more narrow bandwidth 

• shorter grating with high δn value cause more wide bandwidth 

This simulation method shows fundamental dependences between the grating 
dimensions and its properties. This is the basic method for making a grating proposal and next 
many other methods are used for real grating modeling. 
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