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ABSTRACT

The semi-inverse controller avoids some of the problems of normal inverse con-
trollers. Unlike the inverse controller it is based on a forward model of the plant. The
model is then used as a controller by reconfiguring its inputs. For maximum portability of
the algorithm between the development environment and the final implementation in PLC
an abstract object-oriented interface is used.

1 INTRODUCTION

Ever since neural networks began to be used in controller algorithms, the designs
of the algorithms were often based on the ability of a neural network to approximate
the inverse dynamics of the controlled plant. Serial connection of this inverse model with
the plant then theoretically suffices to respond well to the desired value. Unfortunately
the inversion approach has several problems. The inverse model can be hard or even impos-
sible to obtain. Other problems arise from the fact that the inverse controller is a dead-beat
controller. This leads to high sensitivity to the precise learning of the model. When work-
ing with short sampling periods, it also produces extreme control actions. These problems
are highlighted when noise is present. They can be mitigated with filtration, but it wors-
ens the dynamics of the control system. The semi-inverse controller [1] attempts to avoid
the problem of learning of the inverse model by basing itself on a forward model instead.

2 THE SEMI-INVERSE CONTROLLER

2.1 THE INVERSE CONTROLLER IN A CLOSED LOOP

Let’s suppose the plant is approximated by an ARMA model:

FM(z) =
b0 +b1z−1 +b2z−2 + ...+bmz−m

1+a1z−1 +a2z−2 + ...+anz−n (1)



An inverse controller would have a transfer function:

FC(z) =
1+a1z−1 +a2z−2 + ...+anz−n

b0 +b1z−1 +b2z−2 + ...+bmz−m (2)

The inverse controller is normally used in an open loop, without a real feedback. This
is undesirable because it doesn’t eliminate disturbance. Therefore when used in a closed
control loop, it computes the action as:

uk =
ek +a1ek−1 +a2ek−2...+anek−n−b1uk−1−b2uk−2− ...−bmuk−m

b0
(3)

where: k . . . . . . . discrete time step
uk . . . . . . control action in stepk
ek . . . . . . control error in stepk

The big sensitivity of the controller on the model accuracy comes mainly from the pa-
rameterb0, especially when its value is close to zero.

After the finish of a transient response, the control action will be:

uS =
eS(1+a1 +a2 + ...+an)−uS(b1 +b2 + ...+bm)

b0
(4)

It is clear that in the steady state (indicated by the index S) the control erroreS would
be non-zero. Let’s introduce a modified control error:

eM,k = wk +ek = 2wk−yk (5)

where: eM,k . . . . modified control error in stepk
wk . . . . . desired value in stepk
yk . . . . . . system output in stepk

This is implemented by a filterFk(z). If the controller operates on the modified
control error, it will remain non-zero in the steady state but the real error will be able to
reach zero. In order for this to work as expected, the gain of the open loop must be 1.

2.2 MODIFICATION FOR A SEMI-INVERSE CONTROLLER

Let’s start from the inverse controller operating on the modified error. In a steady
state, its action will be:

uS =
eM,S(1+a1 +a2 + ...+an)−uS(b1 +b2 + ...+bm)

b0
(6)

In order to simplify the situation, let’s assume that the gain of the plant model is
AM = 1. We’ll generalize this assumption away later. For now let’s also assume that
the desired value iswk = 1. Under these simplifying conditions we can write:

uS = yS = eM,S = wS = 1 (7)



Therefore some of the members in the equation (6) can be cancelled, resulting in:

1 =
(1+a1 +a2 + ...+an)− (b1 +b2 + ...+bm)

b0
(8)

Thus it holds that:

1 = b0−a1−a2− ...−an +b1 +b2 + ...+bm (9)

At this point we’ll modify the inverse controller and rewrite the action of the semi-
inverse controller in the steady state as:

1 = uS = eM,S(b0−a1−a2− ...−an)+uS(b1 +b2 + ...+bm) =
= 1· (b0−a1−a2− ...−an)+1· (b1 +b2 + ...+bm) (10)

The idea behind this modification is that the parameterb0 is transferred instead of con-
stant 1 in the inverse controller. In the non-steady case the action is computed as:

uk = b0eM,k−a1eM,k−1−a2eM,k−2− ...−aneM,k−n +
+b1uk−1 +b2uk−2 + ...+bmuk−m (11)

The corresponding transfer function of the semi-inverse (SI) controller is:

FSI(z) =
b0−a1z−1− ...−anz−n

1−b1z−1− ...−bmz−m (12)

2.3 NORMALIZATION OF GAIN

The total gain of the serial connection of the semi-inverse controller and the plant is:

A = ASIAM =
b0−a1−a2...−an

1−b1−b2− ...−bm
· b0 +b1 +b2 + ...+bm

1+a1 +a2 + ...+an
(13)

To fulfil the requirement that the gain of the open loop is equal to 1, it’s necessary to
add a multiplication by1

A to the open loop.
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Figure 1: Control loop with a semi-inverse controller
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Figure 2: The model can be linear ARMA or non-linear neural network (NN) model
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Figure 3: The semi-inverse controller is based on the model, only its inputs are reconfigured



3 IMPLEMENTATION

The algorithm was originally implemented in ANSI C as an S-function in Matlab Simulink.
Thanks to the availability of ANSI C development environment in the B&R PLC the final
porting was simplified. To make porting completely seamless, an abstract object-oriented
interface was developed for control algorithms. It allows to transfer the source code of
control algorithms between Matlab S-functions and B&R PLCs. Only the skeleton parts
of the interface had to be implemented separately on both platforms. Not having to change
the source code of the algorithm decreases the possibilities of introducing new bugs.

4 TESTING THE CONTROLLER

Figure 4: Testing the semi-inverse controller on a physical model with approximate transfer
functionFM(s) = 1

(5s+1)(s+1)2

5 CONCLUSION

The semi-inverse controller was implemented and tested in simulations and on physical
models. It is computationally simple and suitable for real-time control. It is highly adapt-
able and it works with short sampling periods. The abstract interface for control algo-
rithms proved useful in porting the semi-inverse controller to the PLC. Using this interface,
the source code of the algorithm is identical in the Matlab S-function and in the PLC.
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