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ABSTRACT 
Quantum information is a rapidly developing field. An application of quantum 

information theory is in new technologies like ultimate safe cryptography and quantum 
computers. For this, there is a need to control the quantum states. In the article, there is given 
an introduction to the quantum information theory. We concentrate our attention how to 
measure quantum information. Next, the difference between classical and quantum 
information is discussed. 

1 INTRODUCTION 

When we want to obtain some information from a quantum state of the particle, we 
must measure this state. The measurement device is composed from two parts [2]. The first is 
a separator which has an arbitrary number of channels (in fact, the number isn’t arbitrary but 
it depends on the type of the particle). The second part is a detector. It detects which channel 
has the particle chosen. So the measurement device is composed from a separator and a 
detector. If some channels are obscured, the measurement device is called filter. The ideal 
filter has open only one channel. 

There are several sections in the article. Section 2 deals about measuring device. Mixed 
quantum states can be described by density operator. This is shown in section 3. The most 
important is section 4, where is the quantity of quantum information defined. With using a 
measurement device and a preparing device quantum information can be converted to 
classical and vice versa. This conversion is illustrated in section 5. There is also shown that 
this conversion is impossible without the original state. Finally, the article is summarized in 
section 6. 

2 MEASURING DEVICE 

The measuring device is described by a projection operator  which is seen to be a 

projection onto the -dimensional subspace, defined by the normalized vectors 

∑
k

kbP̂

k kb  [2] 

  



 .ˆˆ ∑∑ ==∑
k

kk
k

bb bbPP
k

k
k

 ( 1 ) 

The difference between  and  is illustrated in fig. 1. In fig. 1(a), there is the 

measuring device which has infinitely poor resolution. In the other words, if the particle is 
detected (it has got through some channel ), we don’t know in which state 
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is. The ideal measurement device is shown in fig. 1(c). Noted that  is called as eigenvalue 
and 

kb

kb  as eigenstate of the operator P̂ . 
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Fig. 1: Resolution of measuring device 

3 DENSITY OPERATORS 

Assume one particle in state ϕ . This state will be measured. The outcome of 
measuring is 

 ϕϕ ∑=′
k

kbP̂  ( 2 ) 

where ϕ′  is the state of particle in the output of the measuring device. States of particles 
(pure or mixed) are in quantum mechanics describe by a density operator [2] 

 ∑=
j
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where  is the probability that jw jϕ  is chosen. In the formula (3) there is used index j , 
which is absolutely different of . Index  denotes the number of eigenstates of the 
projection operator 

k k
P̂ . The state jϕ  since doesn’t relate to P̂  but it can be expressed as 

superposition of its eigenstates kb . The trace (the sum of diagonal elements) of matrix W  

determinates the probability of passing (detecting). Let’s denote W  as the density operator 
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after passing the filter (measuring device). For the system with infinitely poor resolution it 
can be written [2] 
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For the system with ideal resolution [2] 
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And for the system with finite resolution [2] 
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where ,  are channels which can not be distinguished (in fig. 2(b) these channels 

are 1 and 2, and the other group is composed of channels 3 and 4). The index  is a order 
number of groups. The relation (6) is a general formula. 
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4 QUANTUM INFORMATION MEASURING 

Before defining the quantity of quantum information, there will be shown the 
expression of traces of W . For the system with infinitely poor resolution it can be written ′ˆ
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where  is amplitude of probability that the outcome of measuring will be state 
kb→

Α
ϕ kb . The 

probability of this event is square of the amplitude. Note, to derive relation (7), there was used 
the orthogonality of kb  and ϕϕ=W  (assume only one mixed state ϕ ). Analogously 
for the system with ideal resolution 
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And finally, for the system with finite resolution 
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If the state ϕ  is measured by device with infinitely poor resolution, the output state is 

the same ( )ϕϕ =′ . Hence, there is no information gain. If the measuring device is ideal, 
the maximum of information is obtained. To characterize this information gain, there is 
defined the quantity of quantum information 
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where  is a density operator of used measuring device, which has  channels W ′ˆ N

  



(eigenvalues). For the systems in fig. 1 there can be obtained 0=aQI , , 2/1=bQI 1=cQI . 

 

5 INFORMATION CONVERSION 

In this section, there is presented the conversion of quantum information to classical. 
This is done in two ways. First, we suppose a prepared quantum state ϕ  which is following 
measured (convert to classical information). This system is compared with the second one that 
contains two conversions. These systems are drawn in Fig. 2. 

 
Fig. 2: Conversion of information 

Are systems in fig. 2 equivalent? To find the answer, let’s assume the initial unknown 
quantum state ϕ . The preparing device is characterized by operator R̂ . And measuring by 

P̂  (section 2). Let us denote ϕ′  as the result of the measurement. Thus, the output state of 
the system in fig. 2(a) can be described by the formula (2). And the output state of the second 
system (Fig. 2(b)) satisfies 

 .ˆˆˆˆ ϕϕϕ PPRP ==′  ( 11 ) 

By virtue of the relations (2) and (11) it can be said that both systems shown in Fig. 1 are 
equivalent. But the problem is how to construct the preparing device. Can it exist? It must be 
described by the operator 

 .ˆˆ 1 ϕϕ== −PR  ( 12 ) 

So R̂  projects the measured state back to the original state.  

Both systems in fig. 2 are identical but there is needed the device which is represented 
by the operator R̂ . Have a look at the formula (12) that defines its. There is needed the 
original quantum state ϕ ! So there is a need to clone the initial state ϕ . But it is 
impossible to perfect copy an unknown quantum state (the proof can be found in [1]). 

 But in fact, measuring needn’t to reduce ϕ  (there is no disturbance of the quantum 
state). So the original unknown state can be transferred although there was performed some 
measurement. This system requires some new components. The most important is EPR source 
(source which produces two particles in a singlet-spin state). This solution is presented in [3]. 
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6 SUMMARY 

In this article, we have discussed about quantum information. In the paper was defined 
the quantity of quantum information. Next, there was shown that quantum information isn’t 
the same information as the classical information. Thus quantum information is new kind of 
information. This fact was demonstrated by using two different communication systems. The 
first was a pure quantum channel and the second one was divided into three parts: quantum 
channel, classical and quantum. There were two types of devices, the measuring and 
preparing. Both were described by using operators. There were shown that these channels are 
identical when the preparing device exists. To realize it, there is a need to clone the original 
state but it is impossible. The next possibility is in receiving a large of number particles which 
are in the same quantum state. 
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