
COMPUTATIONAL SIMULATION FORMALIZED BY
STRING-RELATION SYSTEMS

Ing. Martin ŠVEC, Doctoral Degree Programme (2)
Dept. of Information Systems, FIT, BUT

E-mail: svecm@fit.vutbr.cz

Supervised by: Dr. Alexander Meduna

ABSTRACT

This contribution introduces a more detailed approach to the rewriting processes of
computational models. In contrast to the classical definition of equivalency of formal lan-
guage models, which only requires that the yield sequences produce identical languages,
this paper concentrate on the similarity of all steps of the yield sequences. More specifi-
cally, if there exists a suitable substitution mapping strings of every yield sequence in one
model to a sequence of strings in such a way that this sequence forms a yield sequence in
another model, we say that the first model is a simulation of the second one. The paper
formalizes this concept and demonstrates it on examples.

1 INTRODUCTION

The formal language theory defines equivalent formal models as models that generate
the same language. This definition of equivalency plays a crucial role in almost every trans-
formation of formal language models, such as grammars or automata. However, taking a
closer look at the transformations of equivalent models, we see that some transformations
result in models that generate their languages in a more similar way than others.

Consider such a transformation converting one formal model to another equivalent
model. Next, consider a yield sequence generated by the first model and a yield sequence
of the second model. If there exists a substitution such that for every step of the first yield
sequence, there is a corresponding subsequence of steps in the second yield sequence such
that the substitution maps the first and the last string of the subsequence to the strings ap-
pearing in the given step of the first yield sequence, we say that the second yield sequence
simulates the first one with respect to the given substitution. Furthermore, if the number
of steps of the correspoding subsequence is limited by some finite natural number, such a
simulation is said to be close. By a natural generalization of this simulation to all yield
sequences of the models, we obtain a simulation-based relationship, reflecting the similar-
ity of the yield sequences of these models. This paper provides a formal definition of the
above described concept. Then, it demonstrates it on two detailed examples.

2 PRELIMINARIES

This contribution assumes that the reader is familiar with the language theory (see [2]).
LetV be an alphabet.V∗ denotes the free monoid generated byV under the operation

of concatenation. Letε be the unit ofV∗ andV+ = V∗−{ε}. Given a word,w ∈ V∗,
|w| represents the length ofw and alph(w) denotes the set of all symbols occuring inw.
Moreover, sub(w) denotes the set of all subwords ofw. Let R be a binary relation on a set
W. Instead ofu∈ R(v), u,v∈W, we writevRuin this paper.

3 COMPUTATIONAL SIMULATION

Definition 1. A string-relation systemis a quadrupleΨ = (W,⇒,W0,WF), whereW is a
language,⇒ is a binary relation onW, W0 ⊆W is a set ofstart strings, andWF ⊆W is a
set offinal strings.

Every string,w ∈W, represents a 0-step string-relation sequence inΨ. For every
n≥ 1, a sequencew0,w1, . . .wn, wi ∈W, 0≤ i ≤ n, is ann-step string-relation sequence,
symbolically written asw0 ⇒ w1 ⇒ . . . ⇒ wn, if for each 0≤ i ≤ n−1, wi ⇒ wi+1.

If there is a string-relation sequencew0 ⇒ w1 ⇒ . . . ⇒ wn, wheren≥ 0, we write
w0 ⇒n wn. Furthermore,w0 ⇒∗ wn means thatw0 ⇒n wn for somen≥ 0, andw0 ⇒+
wn means thatw0 ⇒n wn for somen≥ 1. Obviously, from the mathematical point of view,
⇒+ and⇒∗ are the transitive closure of⇒ and the transitive and reflexive closure of⇒,
respectively.

Let Ψ= (W,⇒,W0,WF) be a string-relation system. A string-relation sequence inΨ,
u⇒∗ v, whereu,v∈W, is called ayield sequence, if u∈W0. If u⇒∗ v is a yield sequence
andv∈WF , u⇒∗ v is successful.

Let D(Ψ) andSD(Ψ) denote the set of all yield sequences and all successful yield
sequences inΨ, respectively.

Example 1. To illustrate the way we use string-relation systems in this contribution, con-
sider a context-free grammarG= (V,T,P,S), whereV, T, P, andS are the total alpha-
bet, the terminal alphabet, the set of productions, and the start symbol, respectively. In
the standard way (see [2]), define the direct derivation⇒ on V∗, the set ofG’s senten-
tial forms F(G), and the language ofG, L(G). Then, introduce a string-relation system
Ψ= (V∗,⇒,{S},T∗). Observe thatw0 ⇒ w1 ⇒ . . . ⇒ wn is a yield sequence inΨ if and
only if wn ∈ F(G). Furthermore,w0 ⇒ w1 ⇒ . . . ⇒ wn is a successful yield sequence if
and only ifwn ∈ L(G).

Example 2. To give another example of a string-relation system, consider a finite automa-
ton,M = (Q,Σ,R,s,F), whereQ, Σ, R, s, andF are the set of states, the alphabet of input
symbols, the set of computational states, the start state, and the set of final states inM,
respectively. Define the move relation,`, on QΣ∗, and the language ofM, L(M) (see [2]
for the formal definition). Then, create a string-relation system,Ψ = (QΣ∗,`,{s}Σ∗,F).
Examine string-relation sequences inΨ to see thatq0w0 ` q1w1 ` . . . ` qnwn is a yield
sequence if and only ifM makes a sequence of movesq0w0 ` q1w1 ` . . . ` qnwn, where
s= q0, qi ∈ Q, wi ∈ Σ∗, 0≤ i ≤ n, andn is a non-negative integer. Notice that ifq0w0 `

q1w1 ` . . . ` qnwn is a successful yield sequence inΨ, qn∈ F andwn= ε. Finally, observe
thatq0w0 ` q1w1 ` . . . ` qnwn is a successful yield sequence if and only ifw0 ∈ L(M).

Definition 2. Let Ψ= (W,⇒Ψ,W0,WF) andΩ= (W′,⇒Ω,W′
0,W

′
F) be two string-relation

systems, and letσ be a substitution fromW′ to W. Furthermore, letd be a yield sequence
in Ψ of the formw0 ⇒Ψ w1 ⇒Ψ . . . ⇒Ψ wn−1 ⇒Ψ wn, wherewi ∈W, 0≤ i ≤ n, for
somen≥ 0. A yield sequence,h, in Ω simulates d with respect toσ, symbolically written
ash Bσ d, if h is of the formy0 ⇒m1

Ω y1 ⇒m2
Ω . . . ⇒mn−1

Ω yn−1 ⇒mn
Ω yn, wherey j ∈W′,

0≤ j ≤ n, mk ≥ 1, 1≤ k≤ n, andwi ∈ σ(yi) for all 0≤ i ≤ n. If, in addition, there exists
m≥ 1 such thatmk ≤m for each 1≤ k≤ n, thenh m-closely simulates d with respect toσ,
symbolically written ash Bm

σ d.

Definition 3. Let Ψ= (W,⇒Ψ,W0,WF) andΩ= (W′,⇒Ω,W′
0,W

′
F) be two string-relation

systems, and letσ be a substitution fromW′ to W. Let X ⊆ D(Ψ) andY ⊆ D(Ω). Y
simulates X with respect toσ, written asY Bσ X, if the following two conditions hold:

1. for everyd ∈ X, there ish∈Y such thath Bσ d;

2. for everyh∈Y, there isd ∈ X such thath Bσ d.

Let m be a positive integer.Y m-closely simulates X with respect toσ, Y Bm
σ X, provided

that:

1. for everyd ∈ X, there ish∈Y such thath Bm
σ d;

2. for everyh∈Y, there isd ∈ X such thath Bm
σ d.

Definition 4. Let Ψ= (W,⇒Ψ,W0,WF) andΩ= (W′,⇒Ω,W′
0,W

′
F) be two string-relation

systems. If there exists a substitutionσ from W′ to W such thatD(Ω) Bσ D(Ψ) and
SD(Ω) Bσ SD(Ψ), then Ω is said to beΨ’s computational simulatorand successful-
computational simulator, respectively. Furthermore, if there is an integer,m≥ 1, such that
D(Ω) Bm

σ D(Ψ) andSD(Ω) Bm
σ SD(Ψ), Ω is called anm-close computational simulator

andm-close successful-computational simulatorof Ψ, respectively. If there exists a homo-
morphismρ from W′ to W such thatD(Ω) Bρ D(Ψ), SD(Ω) Bρ SD(Ψ), D(Ω) Bm

ρ D(Ψ),
andSD(Ω) Bm

ρ SD(Ψ), thenΩ is Ψ’s homomorphic computational simulator, homomor-
phic successful-computational simulator, m-close homomorphic computational simulator
andm-close homomorphic successful-computational simulator, respectively.

Example 3. Let us demonstrate the idea of computational simulations on grammars gen-
erating the languageL= {anbn : n≥ 1}. Consider

G1 = (V1,{a,b},P1,S), where
V1 = {S,a,b},
P1 = {S→ ab, S→ aSb}.

Clearly, every derivation inG1 has the form

S⇒G1 aSb⇒G1 aaSbb⇒G1 . . . ⇒G1 an−1Sbn−1 ⇒G1 anbn

for somen≥ 1. The language ofG1 is L. Next, consider

G2 = (V2,{a,b},P2,S), where
V2 = {S,A,B,a,b},
P2 = {S→ aB, B→ Ab, A→ aB, B→ b}.

G2 makes every derivation in this way

S⇒G2 aB⇒G2 aAb⇒G2 aaBb⇒G2 aaAbb⇒G2 . . . ⇒G2 anBbn−1 ⇒G2 anAbn,

wheren≥ 1. Furthermore, every sentential formanBbn−1 can be rewritten toanbn. Obvi-
ously,L(G2) = L(G1) = L.

Investigate the derivations inG1 andG2 in terms of computational simulations. To do
so, introduce the corresponding string-relation systemsΨ1 = (V∗

1 ,⇒G1,{S},{a,b}∗) and
Ψ2 = (V∗

2 ,⇒G2,{S},{a,b}∗) by analogy with Example 1. Notice thatΨ1 andΨ2 are de-
fined so that their yield sequences correspond to the above derivations inG1 andG2. Then,
introduce a homomorphismσ2 from V∗

2 to V∗
1 asσ2(S) = σ2(A) = S, σ2(B) = σ2(b) = b,

σ2(a) = a. Let us show thatΨ2 is a 2-close homomorphic computational simulator ofΨ1

with respect toσ2. First, inspect all steps of yield sequences inΨ1:

1. for S⇒G1 ab, there isS⇒G2 aB⇒G2 ab;

2. for S⇒G1 aSb, Ψ2 makesS⇒G2 aB⇒G2 aAb, whereσ2(aAb) = aSb;

3. for an−1Sbn−1 ⇒G1 anSbn, n≥ 2, there isan−1Abn−1 ⇒G2 anBbn−1 ⇒G2 anAbn,
whereσ2(an−1Abn−1) = an−1Sbn−1, σ2(anAbn) = anSbn;

4. for an−1Sbn−1 ⇒G1 anbn, n≥ 2, there existsan−1Abn−1 ⇒G2 anBbn−1 ⇒G2 anbn

with σ2(an−1Abn−1) = an−1Sbn−1 andσ2(anbn) = anbn.

That is, every step in any yield sequence fromΨ1 can be simulated by two steps inΨ2.
Hence, by induction on the length of yield sequences inΨ1, prove that everyd ∈ D(Ψ1)
is 2-close-simulatable by someh∈ D(Ψ2) with respect toσ2; in symbols,h B2

σ2
d. Next,

observe that everyh∈ D(Ψ2) is a 2-close homomorphic simulation of somed ∈ D(Ψ1).
Indeed,S⇒∗

G2
anAbn andS⇒∗

G2
anbn, n≥ 1, are 2-close simulations of yield sequences

from Ψ1. The other forms of yield sequences inΨ2 are of the formS⇒G2 aB andS⇒+G2

anAbn ⇒G2 an+1Bbn, n≥ 1. Becauseσ2(B) = b, the first sequence is a 1-close simula-
tion of S⇒G1 ab and the second sequence is a 2-close simulation ofS⇒+G1

anSbn ⇒G2

an+1bn+1. Hence, for everyh ∈ D(Ψ2), there existsd ∈ D(Ψ1) such thath B2
σ2

d. As a
result,D(Ψ2) B2

σ2
D(Ψ1); that is,Ψ2 is a 2-close homomorphic computational simulator

of Ψ1.
Return to the grammarsG1 andG2. Quite intuitively, the 2-closeness of their deriva-

tions means that the grammars generate their sentential forms in a very similar way. Indeed,
while G1 inserts new occurences of symbolsa andb in one derivation step,G2 does the
same in two steps.

Example 4. ConsiderG1 from Example 3. Let us demonstrate that the following grammar,
G3, homomorphically simulatesG1, but the closeness of this simulation is not limited by
any number.

G3 = (V3,{a,b},P3,S), where
V3 = {S,M,A,B,X,Z,a,b},
P3 = {S→ ZXMXZ, ZA→ ZXa, BZ→ bXZ,

Xa→ aX, bX→ Xb, XMX→ AMB, XMX→ AB,
aA→ Aa, Bb→ bB, ZA→ a, BZ→ b};

Introduce a string-relation systemΨ3 = (V∗
3 ,⇒G3,{S},{a,b}∗) and a homomorphismσ3

from V3 to V1 asσ3(S) = σ3(M) = S, σ3(A) = σ3(a) = a, σ3(B) = σ3(b) = b, σ3(X) =
σ3(Z) = ε. Inspect the definition ofP3 to see that for every derivation stepan−1Sbn−1 ⇒G1

anSan, n ≥ 1, G3 makes a derivationZXan−1Mbn−1XZ ⇒2n−2
G3

Zan−1XMXbn−1Z ⇒G3

Zan−1AMBbn−1Z ⇒2n−2
G3

ZAan−1Mbn−1BZ ⇒2
G3

ZXanMbnXZ. Analogously, for every

an−1Sbn−1 ⇒G1 anbn, n > 0, there isZXan−1Mbn−1XZ ⇒2n−2
G3

Zan−1XMXbn−1Z ⇒G3

Zan−1ABbn−1Z ⇒2n−2
G3

ZAan−1Mbn−1BZ ⇒2
G3

anbn in G3. Informally, while G1 inserts
new occurences of symbolsa andb in the middle of a sentential form,G3 addsas andbs to
the ends of the corresponding sentential form. It is rather easy to prove that ifd ∈ D(Ψ1),
there existsh∈ D(Ψ3) such thath Bσ3 d. Furthermore, it can also be demonstrated that
for everyh∈ D(Ψ3), there is somed ∈ D(Ψ1) such thath Bσ3 d. However, observe that
G3 simulates every derivation step ofG1 by a sequence of steps whose number depends on
the length of the rewritten sentential form. Therefore,D(Ψ3) Bσ3 D(Ψ1), but there exists
nom satisfyingD(Ψ3) Bm

σ3
D(Ψ1).

ACKNOWLEDGEMENTS

The paper has been prepared as a part of the solution of GAČR project No. 201/04/0441
and with the support of the research plan J22/98:262200012.

REFERENCES

[1] Hamburger, H., Richards, D.: Logic and Language Models for Computer Science,
Prentice Hall, London, 2002.

[2] Meduna, A.: Automata and Languages: Theory and Applications, Springer, London,
2000.

[3] Meduna, A., Švec, M.: Forbidding ET0L grammars, Theoretical Computer Science
306 (2003), 449–469.

[4] Meduna, A., Švec, M.: Computational Simulation Formalized by String-Relation Sys-
tems: General Concept and its Illustration in Terms of Lindenmayer Grammars, sub-
mitted.

[5] Parkes, A.: Introduction to Languages, Machines, and Logic: Computable Languages,
Abstract Machines, and Formal Logic, Springer, London, 2002.

