COMPUTATIONAL SIMULATION FORMALIZED BY
STRING-RELATION SYSTEMS

Ing. Martin SVEC, Doctoral Degree Programme (2)
Dept. of Information Systems, FIT, BUT
E-mail: svecm@fit.vutbr.cz

Supervised by: Dr. Alexander Meduna

ABSTRACT

This contribution introduces a more detailed approach to the rewriting processes of
computational models. In contrast to the classical definition of equivalency of formal lan-
guage models, which only requires that the yield sequences produce identical languages,
this paper concentrate on the similarity of all steps of the yield sequences. More specifi-
cally, if there exists a suitable substitution mapping strings of every yield sequence in one
model to a sequence of strings in such a way that this sequence forms a yield sequence in
another model, we say that the first model is a simulation of the second one. The paper
formalizes this concept and demonstrates it on examples.

1 INTRODUCTION

The formal language theory defines equivalent formal models as models that generate
the same language. This definition of equivalency plays a crucial role in almost every trans-
formation of formal language models, such as grammars or automata. However, taking a
closer look at the transformations of equivalent models, we see that some transformations
result in models that generate their languages in a more similar way than others.

Consider such a transformation converting one formal model to another equivalent
model. Next, consider a yield sequence generated by the first model and a yield sequence
of the second model. If there exists a substitution such that for every step of the first yield
sequence, there is a corresponding subsequence of steps in the second yield sequence such
that the substitution maps the first and the last string of the subsequence to the strings ap-
pearing in the given step of the first yield sequence, we say that the second yield sequence
simulates the first one with respect to the given substitution. Furthermore, if the number
of steps of the correspoding subsequence is limited by some finite natural number, such a
simulation is said to be close. By a natural generalization of this simulation to all yield
sequences of the models, we obtain a simulation-based relationship, reflecting the similar-
ity of the yield sequences of these models. This paper provides a formal definition of the
above described concept. Then, it demonstrates it on two detailed examples.

2 PRELIMINARIES

This contribution assumes that the reader is familiar with the language theory (see [2]).
LetV be an alphabe¥* denotes the free monoid generated/oynder the operation
of concatenation. Let be the unit ofV* andV*™ =V* — {e}. Given a wordw € V*,
|w| represents the length of and alptfw) denotes the set of all symbols occuringwn
Moreover, subw) denotes the set of all subwordswf Let R be a binary relation on a set
W. Instead olu € R(v), u,v € W, we writevRuin this paper.

3 COMPUTATIONAL SIMULATION

Definition 1. A string-relation systenis a quadruplél = (W,= Wo,Wr), whereW is a
language=- is a binary relation oV, Wo C W is a set ofstart strings andWe CW is a
set offinal strings

Every string,w € W, represents a 0-step string-relation sequenc®.irFor every
n> 1, a sequencep,w1,...Wnh, Wi € W, 0 <i < n, is ann-step string-relation sequence
symbolically written asvp = w1 = ... = Wy, ifforeach 0<i <n—1,w, = Wi1.

If there is a string-relation sequensg = w1 = ... = Wy, Wheren > 0, we write
wo =" w,. Furthermorewy =* w, means thatvyg =" w, for somen > 0, andwg =T
W, means thaivg =" wy, for somen > 1. Obviously, from the mathematical point of view,
=71 and=-* are the transitive closure ef and the transitive and reflexive closure-of
respectively.

LetW = (W,=,Wp, W) be a string-relation system. A string-relation sequencég,in
u="v, whereu,ve W, is called ayield sequenceaf u e W. If u="* vis a yield sequence
andv € Wg, u=-"* vis successful

Let D(W) andSD(W) denote the set of all yield sequences and all successful yield
sequences i, respectively.

Example 1. To illustrate the way we use string-relation systems in this contribution, con-
sider a context-free gramm& = (V,T,P,S), whereV, T, P, andS are the total alpha-

bet, the terminal alphabet, the set of productions, and the start symbol, respectively. In
the standard way (see [2]), define the direct derivatipron V*, the set ofG’'s senten-

tial forms F(G), and the language @B, L(G). Then, introduce a string-relation system
W= (V*,=,{S},T*). Observe thatvg = w; = ... = Wy is a yield sequence ¥ if and

only if w, € F(G). Furthermorewy = w1 = ... = W is a successful yield sequence if
and only ifw, € L(G).

Example 2. To give another example of a string-relation system, consider a finite automa-
ton,M = (Q,%,R s,F), whereQ, Z, R, s, andF are the set of states, the alphabet of input
symbols, the set of computational states, the start state, and the set of final stdtes in
respectively. Define the move relatidn, on Qx*, and the language ofl, L(M) (see [2]

for the formal definition). Then, create a string-relation systéa; (QX*,F, {s}2* F).
Examine string-relation sequencestnto see thatjowp - quwy - ... F gnwy is a yield
sequence if and only ¥ makes a sequence of movgsvg - gqiwy F ... F gawWy, Where
S=0o, G € Q w € Z*, 0<i <n, andnis a non-negative integer. Notice thafwp -

01wy F ... F gnWhy is a successful yield sequencédfg, € F andw, = €. Finally, observe
thatgowp - gawi = ... F gnwy is a successful yield sequence if and onlwife L(M).

Definition 2. LetW = (W, =y, Wo, W) andQ = (W', =, WJ, W{) be two string-relation
systems, and led be a substitution frorV’ to W. Furthermore, letl be a yield sequence
in Y of the formwy =y W1 =y ... =y Wh_1 =y Wh, Wherew; e W, 0 < i < n, for
somen > 0. A yield sequencd), in Q simulates d with respect t, symbolically written
ash >g d, if his of the formyp =3 Y1 =& --- =g" * ¥n-1 =g Yn, Wherey; € W/,
0<j<nm>11<k<n,andw; € a(y;) forall 0 <i < n. If, in addition, there exists
m > 1 such thatn, < mfor each 1< k < n, thenh m-closely simulates d with respectap
symbolically written as > d.

Definition 3. Let W = (W, =y, Wo, W) andQ = (W', =, WJ, W{) be two string-relation
systems, and let be a substitution fronw’ to W. Let X C D(W) andY C D(Q). Y
simulates X with respect t, written asY >4 X, if the following two conditions hold:

1. for everyd € X, there ish € Y such thah > d;
2. foreveryh €Y, there isd € X such thah >4 d.

Let mbe a positive integelY m-closely simulates X with respectapY ' X, provided
that:

1. for everyd € X, there ish € Y such that >0 d;
2. foreveryh €Y, there isd € X such thah 7' d.

Definition 4. Let W = (W, =y, Wo, W) andQ = (W', =, Wy, W{) be two string-relation
systems. If there exists a substitutionfrom W’ to W such thatD(Q) >, D(W¥) and
SD(Q) ¢ SDW), thenQ is said to beW’s computational simulatoand successful-
computational simulatqrespectively. Furthermore, if there is an integet> 1, such that
D(Q) >3 D(W) andSD(Q) > SD(W), Q is called anm-close computational simulator
andm-close successful-computational simulaibk, respectively. If there exists a homo-
morphismp from W’ to W such thaD(Q) >, D(W), SD(Q) >p SD(W), D(Q) >g' D(W),
andSD(Q) 7' SD(W), thenQ is W’s homomorphic computational simulatdromomor-
phic successful-computational simulatar-close homomorphic computational simulator
andm-close homomorphic successful-computational simula¢spectively.

Example 3. Let us demonstrate the idea of computational simulations on grammars gen-
erating the language= {a"b": n> 1}. Consider

G = (Vl,{a, b},Pl,S), where

Vi = {Sab},

Pp = {S—ab S—aSh.
Clearly, every derivation i, has the form

S:>Gl aSb:>(31 aaSbbz>Gl s =G a"isyt =G ap"

for somen > 1. The language dB; is L. Next, consider

G = (Vz,{a, b},Pz,S), where
V2 = {S>A7 B7 a7 b}7
P, = {S—aB B— Ab A— aB B— b}.

Gz makes every derivation in this way
S=¢, aB=¢, aAb=, aaBb=g, aaAbb=g, ... =¢, "B ! =g, a"AL",

wheren > 1. Furthermore, every sentential foafBb"! can be rewritten ta"b". Obvi-
ously,L(G2) =L(G1) = L.

Investigate the derivations {B; andG; in terms of computational simulations. To do
so, introduce the corresponding string-relation systdhs- (V;',=¢,,{S},{a,b}*) and
W, = (VJ,=c,,{S},{a b}*) by analogy with Example 1. Notice thdt; andW¥, are de-
fined so that their yield sequences correspond to the above derivatiGasimdG,. Then,
introduce a homomorphismy, from V' to V)" aso2(S) = 02(A) = S, 02(B) = 02(b) = b,
02(a) = a. Let us show tha¥ is a 2-close homomorphic computational simulatokaf
with respect ta,. First, inspect all steps of yield sequence&in

1. forS=g, ab, there isS=-g, aB =g, ab;
2. forS=-g, aSh W> makesS=-g, aB =, aAb whereoz(aAb) = aSh

3. fora™ 1Syt =, a"sy, n > 2, there isa" AR =g, a"BO L =, a"AD",
whereag,(a" 1AL 1) = a"1SP, gy (a"AR) = a"SH;

4. fora"1syg—t =, a"", n > 2, there exista" A1 =, a"Bb" =, a"b"
with gp(a"" 1AL 1) = a"1SP-! ando,(a"b") = a"b".

That is, every step in any yield sequence fréin can be simulated by two steps W.
Hence, by induction on the length of yield sequence¥inprove that everyl € D(W¥;)

is 2-close-simulatable by sonfiec D(W;) with respect tao,; in symbols;h >§2 d. Next,
observe that everlg € D(W;) is a 2-close homomorphic simulation of sowhe D(¥1).
Indeed,S=-¢, a"Ab" andS=-, a'b", n > 1, are 2-close simulations of yield sequences
from W1. The other forms of yield sequences#s are of the fornrS=-g, aBandS :>(+32
a"Al" =, a"t1BW", n > 1. Becausas,(B) = b, the first sequence is a 1-close simula-
tion of S=g, ab and the second sequence is a 2-close simulati(ﬁlﬁfg1 a'sp =g,
a1 Hence, for evenh € D(W,), there existsl € D(W1) such thah >3, d. As a
result,D(W¥7) >§2 D(W1); that is,W; is a 2-close homomorphic computational simulator
of Y,.

Return to the grammafs; andG,. Quite intuitively, the 2-closeness of their deriva-
tions means that the grammars generate their sentential forms in a very similar way. Indeed,
while G; inserts new occurences of symbaleindb in one derivation stepG, does the
same in two steps.

Example 4. ConsideiG; from Example 3. Let us demonstrate that the following grammar,
Gs, homomorphically simulate&;, but the closeness of this simulation is not limited by
any number.

Gz = (V37{a7 b},Pg,S), where

Vi = {SM,AB,X,Zabl,

Ps = {S—ZXMXZ ZA— ZXa BZ— bXZ,
Xa— aX, bX — Xb, XMX — AMB, XMX — AB,
aA— Aa Bb— bB, ZA— a, BZ— b};

Introduce a string-relation syste#s = (V5,=c,, {S},{a,b}*) and a homomorphisraz
from V3 to Vi 6180'3(3) = O'3(|V|) =5 0'3(A) = 0'3(8.) = q, 0'3(8) = Og(b) =b, 0'3()() =
03(Z) = &. Inspect the definition dP; to see that for every derivation stefy 'S8 ! =g,
a'Sd', n> 1, Gz makes a derivatioZ Xd'*Mb"1XZ =% Za' IXMXH1Z =,
Za'AMBH1Z =22 ZAd ML 1BZ =2 ZXd'Mb"XZ. Analogously, for every
a" ISyl =g, a"b", n> 0, there isZXa IMb"IXZ =272 ZaIXMXE1Z =,
za1ABp1z :%;*2 ZAd~Mb"!BZ =2 a" in Ga. Informally, while Gy inserts
new occurences of symbasandb in the middle of a sentential fornGs addsas andbs to

the ends of the corresponding sentential form. It is rather easy to prove thatDf V1),
there existd € D(W3) such thath >4, d. Furthermore, it can also be demonstrated that
for everyh € D(W3), there is someé € D(W1) such thath >4, d. However, observe that
G3 simulates every derivation step@f by a sequence of steps whose number depends on
the length of the rewritten sentential form. TherefddéW¥s) >4, D(W1), but there exists
no msatisfyingD(W3) g, D(W1).

ACKNOWLEDGEMENTS

The paper has been prepared as a part of the solution élFGAoject No. 201/04/0441
and with the support of the research plan J22/98:262200012.

REFERENCES

[1] Hamburger, H., Richards, D.: Logic and Language Models for Computer Science,
Prentice Hall, London, 2002.

[2] Meduna, A.: Automata and Languages: Theory and Applications, Springer, London,
2000.

[3] Meduna, A., Svec, M.: Forbidding ETOL grammars, Theoretical Computer Science
306 (2003), 449-469.

[4] Meduna, A., Svec, M.: Computational Simulation Formalized by String-Relation Sys-
tems: General Concept and its lllustration in Terms of Lindenmayer Grammars, sub-
mitted.

[5] Parkes, A.: Introduction to Languages, Machines, and Logic: Computable Languages,
Abstract Machines, and Formal Logic, Springer, London, 2002.

