

ON INDUCTIVE APPROACH IN SECURITY PROTOCOL
VERIFICATION

Ing. Pavel OČENÁŠEK, Doctoral Degree Programme (1)
Dept. of Information Systems, FIT, BUT

E-mail: ocenaspa@fit.vutbr.cz

Supervised by: Prof. Miroslav Švéda

ABSTRACT
This paper outlines some inductive methods that are used in verification of security

protocols. The basic idea of inductive proof is outlined, followed by the description of the
popular theorem prover Isabelle. The second part covers the description of spi-calculus which
can be used to analyze security protocols as concurrent processes over communication
channels.

1 INTRODUCTION

Security protocols are intended to let agents communicate securely over an insecure
network. A crucial goal is to prevent a spy from reading the contents of messages intended for
others (secrecy). Most security protocols also deal with authenticity. This means that if a
message appears to be from agent A, then A sent precisely this message and it contains the
indication of its freshness.

Recently, many formal methods [1] have been used for analyzing security protocols.
We can identify two main approaches: state exploration and belief logics. In the first type of
methods, the exhaustive search checks safety of all reachable states. In the second case we
formalize what communicating agents can infer from the received messages. The inductive
approach deals with both of them. From the model-based approach, we borrow a concrete
notion of events, such as agent A is sending message X to the agent B. The second one allows
us to use an idea of deriving guarantees from each message.

2 INDUCTIVE APPROACH

The inductive approach scales up to the analysis of real-world protocols thanks to its
extensibility. Protocols are formalized as the set of all possible traces, which are lists of
events such as “A sends message X to B”. Properties are proved by induction on traces, using
the theorem prover (popular tool Isabelle).

The approach is oriented around proving guarantees, but their absence can indicate
possible attacks.

2.1 OPERATORS PARTS, ANALZ AND SYNTH
Each of these three operators is defined inductively, as the least set closed under

specified extensions. Each extends a set of messages H with other items derivable from H.

The set parts H is obtained from H by repeatedly adding the components of compound
messages and the bodies of encrypted messages. It represents the set of all components of H
that are potentially recoverable, perhaps using additional keys.

Crypt K X ∈ parts H ⇒ X ∈ parts H

parts G ∪ parts H = parts (G ∪ H) .

Another set analz H is obtained from H by repeatedly adding the components of
compound messages and by decrypting messages whose keys are in analz H.

Crypt K X ∈ analz H, K-1 ∈ analz H ⇒ X ∈ analz H

analz G ∪ analz H ⊆ analz (G ∪ H)

analz H ⊆ parts H .

The last set synt H models the messages a spy could build up from elements of H
repeatedly adding agent names, forming compound messages and encrypting with keys
contained in H. Agent names are added because they are publicly known.

X ∈ synth H, K ∈ H ⇒ Crypt K X ∈ synth H

K ∈ synth H ⇒ K ∈ H .

2.2 MODELING A PROTOCOL

Paulson [2] [3] consider a security protocol and an unlimited population of agents. In
particular, the agents include a spy who monitors the entire network and knows the long-term
secrets of an unspecified set of compromised agents.

The free type key is introduced to represent cryptographic keys. In the symmetric-key
setting, each agent is provided with a long-term key that is shared with the server

shrK : agent → key
whereas for asymmetric-key setting two functions are defined respectively for the private and
the public keys of each agent.

A protocol description usually requires three additional rules. The first is the empty list
– a trace denoted by []. Two other rules are needed to model fake messages and accidents.

If evs is a trace, X ∈ synth(analz H) is a fraudulent message and B ≠ Spy then evs may
be extended with the event

Says Spy B X
Here H contains all messages in the past trace. It includes the spy’s initial state, which holds

the long-term keys of and arbitrary set of ‘bad’ agents.

If evs is a trace and S distributed in the session key K in a run involving the nonces Na
and Nb, then evs may be extended with the event

Notes Spy {Na, Nb, K}
This rule models the loss of session keys.

2.3 INDUCTION
The principle of inductive proof is the following: Let N be the set of natural numbers

and n ∈ N. To prove P(n) for each number n, prove P(0) and prove P(x)  P(Suc x) for each n
. For the set of traces, the induction principle says that P(evs) holds for each trace evs
provided P is preserved under all the rules for creating traces.

We must prove P[] to cover the empty trace. For each of the other rules, we must prove
an assertion of the form P(evs)  P(ev#evs), where event ev contains the new message.

2.4 ISABELLE
The approach has been automated using Isabelle/HOL [4] [5], an instantiation of the

generic theorem prover Isabelle for higher-order logic. Isabelle is appropriate because it
contains support for inductively defined sets and automatic tools related to them.

In Isabelle, there are various kinds of message items declared:
datatype agent = Server | Friend nat | Spy
datatype msg = Agent agent

| Nonce nat
| Key key
| MPair msg msg
| Crypt key msg

To illustrate the syntax, we can define analz operator:

const analz :: msg set => msg set
inductive “analz H”
intrs
Inj “X ∈ H ⇒ X ∈ analz H”
Fst “{|X,Y|}∈analz H ⇒ X∈analz H“
Snd “{|X,Y|}∈analz H ⇒ Y∈analz H“
Decrypt “[| Crypt K X∈analz H; Key(invKey K)∈analz H |] ⇒ X∈analz H“

In Isabelle, proofs are highly automated. One command can generate thousands of
inferences. Small changes to protocols involve only small changes to proof scripts.

2.5 SPI CALCULUS
The spi-calculus [6] [7] is an extension of the pi-calculus with cryptographic primitives.

It is designed for the description and analysis of security protocols. These protocols rely on
cryptography and on communication channels with properties like authenticity and privacy. In

the spi-calculus a cryptographic protocol can be described as a concurrent process. Analysis
of the traces generated by this process can be used to verify authentication and secrecy
properties of the protocol.

The main drawback of trace analysis is that protocols usually can generate infinitely
many traces. The reason is that the behavior of the environment is largely unpredictable.
Rather than trying to describe this behavior as a specific process, it is sensible to simply
assume that the communication network is totally under the control of the environment. The
basic idea is to replace the infinitely many transitions arising from an input action by a single
symbolic transition, and to represent the received message by a variable. In spi-calculus, the
receiver of a message is written as a(x).R, where a is an arbitrary label, x is the input variable
and R is the continuation.

For example, suppose that a process P, after receiving a message x, tries to decrypt x
using key k, and, if this succeeds, calls y the result and proceed like P’.

This is written as P =def a(x).case x of {y}k in P’.

If we represent the state of the protocol as a pair 〈σ, Q〉, where σ is the trace of process’
past actions and Q is a process term, the only two initial transitions of P will be:

〈ε, P〉s →s 〈a(x), case x of {y}k in P’〉s →s 〈a〈{y}k〉, P’[{y}k / x] 〉s
where subscript s means “symbolic”.

We assume an infinite set of names, to be used for communication channels, and an
infinite set of variables. We let m, n, p, q and r range over names, and let x, y, and z range
over variables. The set of terms is defined by the grammar:
L, M, N ::= terms

n name
(M, N) pair
0 zero
suc(M) successor
x variable

The set of processes is defined by the grammar:
P, Q, R ::= processes

M<N>.P output
M(x).P input
P | Q composition
(νn)P restriction
!P replication
[M is N] P match
0 nil
let (x, y) = M in P pair splitting
case M of 0: P suc (x): Q integer case

A composition P | Q denotes processes P and Q running in parallel. Each may interact with
the other on channels known to both, or with the outside world, independently of the other.

A restriction (νn)P is a process that makes a new, private name n, which may occur in P, and
then behaves as P.

If we have a communication protocol:
A → S: cAB on cAS
S → B: cABon cAB
A → B: M on cAB

then the spi-calculus description is the following:
A(M) ≅ (νcAB)cAS<cAB>.cAB<M>
S ≅ cAS(x).cSB<x>
B ≅ cSB(x).x(y).F(y)
Inst(M) ≅ (νcAS)(νcSB)(A(M) | S | B)

The method of using spi-calculus for verification yields decidability results for
interesting classes of protocols and properties and is amenable to mechanization.

3 CONCLUSIONS

The inductive method is simple and general. Theorem proving seems to be, along with
model checking, the most successful approach to the formal analysis of security protocols. It
is intuitive and correctly deals with freshness and multiple executions.

The limitations of formal methods are obvious from e.g. attack to a recursive protocols.
Here models idealize real world (assuming strong encryption). Recent research was provided
in compositional methods. This approach seems to be necessary for different levels of
abstraction - protocol messages, cryptographic algorithms should be verified separately. Our
future work will focus on utilization of proposed approach for verification of wireless
communication protocols based on the IEEE 802.11 standard.

REFERENCES
[1] Bella, Giampaolo: Inductive Verification of Cryptographic Protocols, University of

Cambridge, 2000

[2] Paulson, L. C.: The inductive approach to verifying cryptographic protocols. Journal of
Computer Security, Volume 6, Issue 1,2, pp.85-128, September 1998

[3] Paulson, L. C.: Proving Security Protocols Correct. In: Proc. of LICS’99, IEEE Computer
Society Press, pp.370-383, 1999

[4] Bella, G., Paulson, L. C.: Using Isabelle to Prove Properties of the Kerberos
Authentication System. University of Cambridge, 1997

[5] Paulson, L. C.: Isabelle: A Generic Theorem Prover. Springer Verlag 1994. LNCS 828

[6] Boreale, Michele: Symbolic analysis of cryptographic protocols in the spi-calculus,
Universita di Firenze, 2000

[7] Abadi, M., Gordon A. D.: A calculus for cryptographic protocols: The spi calculus.
Information and Computation, 1999

