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ABSTRACT 
This paper outlines some inductive methods that are used in verification of security 

protocols. The basic idea of inductive proof is outlined, followed by the description of the 
popular theorem prover Isabelle. The second part covers the description of spi-calculus which 
can be used to analyze security protocols as concurrent processes over communication 
channels. 

1 INTRODUCTION 

Security protocols are intended to let agents communicate securely over an insecure 
network. A crucial goal is to prevent a spy from reading the contents of messages intended for 
others (secrecy).  Most security protocols also deal with authenticity. This means that if a 
message appears to be from agent A, then A sent precisely this message and it contains the 
indication of its freshness. 

Recently, many formal methods [1] have been used for analyzing security protocols. 
We can identify two main approaches: state exploration and belief logics. In the first type of 
methods, the exhaustive search checks safety of all reachable states. In the second case we 
formalize what communicating agents can infer from the received messages. The inductive 
approach deals with both of them. From the model-based approach, we borrow a concrete 
notion of events, such as agent A is sending message X to the agent B. The second one allows 
us to use an idea of deriving guarantees from each message. 

2 INDUCTIVE APPROACH 

The inductive approach scales up to the analysis of real-world protocols thanks to its 
extensibility. Protocols are formalized as the set of all possible traces, which are lists of 
events such as “A sends message X to B”. Properties are proved by induction on traces, using 
the theorem prover (popular tool Isabelle). 

The approach is oriented around proving guarantees, but their absence can indicate 
possible attacks. 



  

2.1 OPERATORS PARTS, ANALZ AND SYNTH 
Each of these three operators is defined inductively, as the least set closed under 

specified extensions. Each extends a set of messages H with other items derivable from H. 

 

The set parts H is obtained from H by repeatedly adding the components of compound 
messages and the bodies of encrypted messages. It represents the set of all components of H 
that are potentially recoverable, perhaps using additional keys. 

Crypt K X ∈ parts H ⇒ X ∈ parts H 

parts G ∪ parts H = parts (G ∪ H) . 

 

Another set analz H is obtained from H by repeatedly adding the components of 
compound messages and by decrypting messages whose keys are in analz H. 

Crypt K X ∈ analz H, K-1 ∈ analz H ⇒ X ∈ analz H 

analz G ∪ analz H ⊆ analz (G ∪ H) 

analz H ⊆ parts H . 

 

The last set synt H models the messages a spy could build up from elements of H 
repeatedly adding agent names, forming compound messages and encrypting with keys 
contained in H. Agent names are added because they are publicly known. 

X ∈ synth H, K ∈ H ⇒ Crypt K X ∈ synth H 

K ∈ synth H ⇒ K ∈ H . 

 

2.2 MODELING A PROTOCOL 

Paulson [2] [3] consider a security protocol and an unlimited population of agents. In 
particular, the agents include a spy who monitors the entire network and knows the long-term 
secrets of an unspecified set of compromised agents. 

The free type key is introduced to represent cryptographic keys. In the symmetric-key 
setting, each agent is provided with a long-term key that is shared with the server 

shrK : agent → key 
whereas for asymmetric-key setting two functions are defined respectively for the private and 
the public keys of each agent. 

A protocol description usually requires three additional rules. The first is the empty list 
– a trace denoted by []. Two other rules are needed to model fake messages and accidents. 

If evs is a trace, X ∈ synth(analz H) is a fraudulent message and B ≠ Spy then evs may 
be extended with the event 

Says Spy B X 
Here H contains all messages in the past trace. It includes the spy’s initial state, which holds 



  

the long-term keys of and arbitrary set of ‘bad’ agents. 

If evs is a trace and S distributed in the session key K in a run involving the nonces Na 
and Nb, then evs may be extended with the event 

Notes Spy {Na, Nb, K} 
This rule models the loss of session keys. 

2.3 INDUCTION 
The principle of inductive proof is the following: Let N be the set of natural numbers 

and n ∈ N. To prove P(n) for each number n, prove P(0) and prove P(x)  P(Suc x) for each n 
. For the set of traces, the induction principle says that P(evs) holds for each trace evs 
provided P is preserved under all the rules for creating traces. 

We must prove P[] to cover the empty trace. For each of the other rules, we must prove 
an assertion of the form P(evs)  P(ev#evs), where event ev contains the new message. 

2.4 ISABELLE 
The approach has been automated using Isabelle/HOL [4] [5], an instantiation of the 

generic theorem prover Isabelle for higher-order logic. Isabelle is appropriate because it 
contains support for inductively defined sets and automatic tools related to them. 

 

In Isabelle, there are various kinds of message items declared: 
datatype agent = Server | Friend nat | Spy 
datatype msg = Agent agent 

| Nonce nat 
| Key key 
| MPair msg msg 
| Crypt key msg 

 

To illustrate the syntax, we can define analz operator: 
 
const analz :: msg set => msg set 
inductive “analz H” 
intrs 
Inj  “X ∈ H ⇒ X ∈ analz H” 
Fst  “{|X,Y|}∈analz H ⇒ X∈analz H“ 
Snd “{|X,Y|}∈analz H ⇒ Y∈analz H“ 
Decrypt “[ | Crypt K X∈analz H;  Key(invKey K)∈analz H | ] ⇒ X∈analz H“ 

 

In Isabelle, proofs are highly automated. One command can generate thousands of 
inferences. Small changes to protocols involve only small changes to proof scripts. 

2.5 SPI CALCULUS 
The spi-calculus [6] [7] is an extension of the pi-calculus with cryptographic primitives. 

It is designed for the description and analysis of security protocols. These protocols rely on 
cryptography and on communication channels with properties like authenticity and privacy. In 



  

the spi-calculus a cryptographic protocol can be described as a concurrent process. Analysis 
of the traces generated by this process can be used to verify authentication and secrecy 
properties of the protocol. 

The main drawback of trace analysis is that protocols usually can generate infinitely 
many traces. The reason is that the behavior of the environment is largely unpredictable. 
Rather than trying to describe this behavior as a specific process, it is sensible to simply 
assume that the communication network is totally under the control of the environment. The 
basic idea is to replace the infinitely many transitions arising from an input action by a single 
symbolic transition, and to represent the received message by a variable. In spi-calculus, the 
receiver of a message is written as a(x).R, where a is an arbitrary label, x is the input variable 
and R is the continuation. 

For example, suppose that a process P, after receiving a message x, tries to decrypt x 
using key k, and, if this succeeds, calls y the result and proceed like P’. 

This is written as P =def a(x).case x of {y}k in P’. 

If we represent the state of the protocol as a pair 〈σ, Q〉, where σ is the trace of process’ 
past actions and Q is a process term, the only two initial transitions of P will be: 

〈ε, P〉s →s 〈a(x), case x of {y}k in P’〉s →s 〈a〈{y}k〉, P’[{y}k / x] 〉s  
where subscript s means “symbolic”. 

We assume an infinite set of names, to be used for communication channels, and an 
infinite set of variables. We let m, n, p, q and r range over names, and let x, y, and z range 
over variables. The set of terms is defined by the grammar: 
L, M, N ::=      terms 

n       name 
(M, N)      pair 
0       zero 
suc(M)      successor 
x       variable 

 

The set of processes is defined by the grammar: 
P, Q, R ::=      processes 

M<N>.P      output 
M(x).P      input 
P | Q      composition 
(νn)P       restriction 
!P       replication 
[M is N] P     match 
0       nil 
let (x, y) = M in P    pair splitting 
case M of 0: P suc (x): Q  integer case 

 

A composition P | Q denotes processes P and Q running in parallel. Each may interact with 
the other on channels known to both, or with the outside world, independently of the other. 



  

A restriction (νn)P is a process that makes a new, private name n, which may occur in P, and 
then behaves as P. 

If we have a communication protocol: 
A → S: cAB on cAS  
S → B: cABon cAB  
A → B: M on cAB  

then the spi-calculus description is the following: 
A(M) ≅ (νcAB)cAS<cAB>.cAB<M> 
S ≅ cAS(x).cSB<x> 
B ≅ cSB(x).x(y).F(y) 
Inst(M) ≅ (νcAS)(νcSB)(A(M) | S | B) 

The method of using spi-calculus for verification yields decidability results for 
interesting classes of protocols and properties and is amenable to mechanization. 

3 CONCLUSIONS 

The inductive method is simple and general. Theorem proving seems to be, along with 
model checking, the most successful approach to the formal analysis of security protocols. It 
is intuitive and correctly deals with freshness and multiple executions. 

The limitations of formal methods are obvious from e.g. attack to a recursive protocols. 
Here models idealize real world (assuming strong encryption). Recent research was provided 
in compositional methods. This approach seems to be necessary for different levels of 
abstraction - protocol messages, cryptographic algorithms should be verified separately. Our 
future work will focus on utilization of proposed approach for verification of wireless 
communication protocols based on the IEEE 802.11 standard. 
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