MULTIGENERATIVE GRAMMAR SYSTEMS

Ing. Roman LUKÁŠ, Doctoral Degree Programme (1) Dept. of Information Systems, FIT, BUT E-mail: lukas@fit.vutbr.cz

Supervised by: Dr. Alexander Meduna

ABSTRACT

This paper presents new models for all recursive enumerable languages. These models are based on multigenerative grammar systems that simultaneously generate several strings in a parallel way. The components of these models are context–free grammars, working in a leftmost way. The rewritten nonterminals are determined by a finite set of nonterminal sequences.

1 N-MULTIGENERATIVE NONTERMINAL-SYNCHRONIZED GRAMMAR SYSTEM

1.1 BASIC DEFINITION

An *n*-multigenerative nonterminal-synchronized grammar system (MGN) is *n*+1 tuple

 $\Gamma = (G_1, G_2, ..., G_n, Q)$, where:

- $G_i = (N_i, T_i, P_i, S_i)$ is a context-free grammar for each i = 1, ..., n,
- *Q* is a finite set of *n*-tuples of the form $(A_1, A_2, ..., A_n)$, where $A_i \in N_i$ for all i = 1, ..., n.

1.2 SENTENTIAL N-FORM

Let $\Gamma = (G_1, G_2, ..., G_n, Q)$ be a MGN. Then a *sentential n-form of MGN* is an *n*-tuple of the form $\chi = (x_1, x_2, ..., x_n)$, where $x_i \in (N_i \cup T_i)^*$ for all i = 1, ..., n.

1.3 DIRECT DERIVATION STEP

Let $\Gamma = (G_1, G_2, ..., G_n, Q)$ be a MGN. Let $\chi = (u_1A_1v_1, u_2A_2v_2, ..., u_nA_nv_n)$ and $\chi' = (u_1x_1v_1, u_2x_2v_2, ..., u_nx_nv_n)$ are two sentential *n*-form, where $A_i \in N_i, u_i \in T_i^*$, and $v_i, x_i \in (N_i \cup T_i)^*$ for all i = 1, ..., n. Let $A_i \rightarrow x_i \in P_i$ for all all i = 1, ..., n and $(A_1, A_2, ..., A_n) \in Q$. Then χ directly derives χ' in Γ , denoted by $\chi \Rightarrow \chi'$.

1.4 SEQUENCE OF DERIVATION STEPS, PART 1

Let $\Gamma = (G_1, G_2, ..., G_n, Q)$ be a MGN.

- Let χ by any sentential *n*-form of Γ . Γ makes a *zero-step* derivation from χ to χ , which is written as $\chi \Rightarrow^0 \chi$.
- Let there exists a sequence of sentential *n*-forms χ₀, χ₁, ..., χ_k for some k ≥ 1 such that χ_{i-1} ⇒ χ_i for all i = 1, ..., k. Then, Γ makes *n*-step derivation from χ₀ to χ_k, which is written as χ₀ ⇒ⁿ χ_k.

1.5 SEQUENCE OF DERIVATION STEPS, PART 2

Let $\Gamma = (G_1, G_2, ..., G_n, Q)$ be a MGN, let χ and χ' be two sentential *n*-forms of Γ .

- If there exists $k \ge 1$ so $\chi \Rightarrow^k \chi'$ in Γ , then $\chi \Rightarrow^+ \chi'$,
- If there exists $k \ge 0$ so $\chi \Longrightarrow^k \chi'$ in Γ , then $\chi \Longrightarrow^* \chi'$.

1.6 N-LANGUAGE

Let $\Gamma = (G_1, G_2, ..., G_n, Q)$ be a MGN. The *n*-language of Γ , *n*-*L*(Γ), is defined as:

 $n-L(\Gamma) = \{(w_1, w_2, \dots, w_n): (S_1, S_2, \dots, S_n) \Rightarrow^* (w_1, w_2, \dots, w_n), w_i \in T_i^* \text{ for all } i = 1, \dots, n\}$

1.7 THREE TYPES OF GENERATED LANGUAGES

- The language generated by Γ in the union mode, $L_{union}(\Gamma)$, is defined as: $L_{union}(\Gamma) = \{w: (w_1, w_2, ..., w_n) \in n \cdot L(\Gamma), w \in \{w_i: i = 1, ..., n\}\}$
- The language generated by Γ in the concatenation mode, $L_{conc}(\Gamma)$, is defined as: $L_{conc}(\Gamma) = \{w_1w_2...w_n: (w_1, w_2, ..., w_n) \in n-L(\Gamma)\}$
- The language generated by Γ in the leftmost mode, $L_{lm}(\Gamma)$, is defined as: $L_{lm}(\Gamma) = \{w_1: (w_1, w_2, ..., w_n) \in n - L(\Gamma)\}$

1.8 EXAMPLE

 $\Gamma = (G_1, G_2, Q)$, where:

- $G_1 = (\{S_1, A_1\}, \{a, b, c\}, \{S_1 \to aS_1, S_1 \to aA_1, A_1 \to bA_1c, A_1 \to bc\}, S_1),$
- $G_2 = (\{S_2, A_2\}, \{d\}, \{S_2 \to S_2A_2, S_2 \to A_2, A_2 \to d\}, S_2),$
- $Q = \{(S_1, A_1), (S_2, A_2)\}$

is a 2-multigenerative nonterminal-synchronized grammar system.

Notice that this system generates following languages in the different modes:

- $L_{union}(\Gamma) = \{a^n b^n c^n : n \ge 1\} \cup \{d^n : n \ge 1\},\$
- $L_{conc}(\Gamma) = \{a^n b^n c^n d^n : n \ge 1\},$
- $L_{lm}(\Gamma) = \{a^n b^n c^n : n \ge 1\}.$

2 N-MULTIGENERATIVE RULE-SYNCHRONIZED GRAMMAR SYSTEM

2.1 BASIC DEFINITION

An *n*-multigenerative rule-synchronized grammar system (MGR) is *n*+1 tuple

 $\Gamma = (G_1, G_2, ..., G_n, Q)$, where:

- $G_i = (N_i, T_i, P_i, S_i)$ is a context-free grammar for each i = 1, ..., n,
- *Q* is a finite set of *n*-tuples of the form $(p_1, p_2, ..., p_n)$, where $p_i \in P_i$ for all i = 1, ..., n.

2.2 SENTENTIAL N-FORM

A sentential n-form for MGR is defined analogically as the sentential n-form for a MGN.

2.3 DIRECT DERIVATION STEP

Let $\Gamma = (G_1, G_2, ..., G_n, Q)$ be a MGR. Let $\chi = (u_1A_1v_1, u_2A_2v_2, ..., u_nA_nv_n)$ and $\chi' = (u_1x_1v_1, u_2x_2v_2, ..., u_nx_nv_n)$ are two sentential *n*-form, where $A_i \in N_i, u_i \in T_i^*$, and $v_i, x_i \in (N_i \cup T_i)^*$ for all i = 1, ..., n. Let $p_i: A_i \to x_i \in P_i$ for all all i = 1, ..., n and $(p_1, p_2, ..., p_n) \in Q$. Then χ directly derives χ' in Γ , denoted by $\chi \Rightarrow \chi'$.

2.4 SEQUENCE OF DERIVATION STEPS

A sequence of derivation steps for MGR is defined analogically as the sequence of derivation steps for a MGN.

2.5 N-LANGUAGE

An *n*-language for MGR is defined analogically as the *n*-language for a MGN.

2.6 THREE TYPES OF GENERATED LANGUAGES

A language generated by MGN in the X mode, for each $X \in \{union, conc, lm\}$, is defined analogically as the language generated by MGR in the X mode.

2.7 EXAMPLE

 $\Gamma = (G_1, G_2, Q)$, where:

- $G_1 = (\{S_1, A_1\}, \{a, b, c\}, \{1: S_1 \rightarrow aS_1, 2: S_1 \rightarrow aA_1, 3: A_1 \rightarrow bA_1c, 4: A_1 \rightarrow bc\}, S_1),$
- $G_2 = (\{S_2\}, \{d\}, \{1: S_2 \to S_2 S_2, 2: S_2 \to S_2, 3: S_2 \to d\}, S_2),$
- $Q = \{(1, 1), (2, 2), (3, 3), (4, 3)\}.$

is 2-multigenerative rule-synchronized grammar system.

Notice that this system generates following languages in the different modes:

- $L_{union}(\Gamma) = \{a^n b^n c^n : n \ge 1\} \cup \{d^n : n \ge 1\},\$
- $L_{conc}(\Gamma) = \{a^n b^n c^n d^n : n \ge 1\},\$
- $L_{lm}(\Gamma) = \{a^n b^n c^n : n \ge 1\}.$

3 CONVERSIONS BETWEEN MGN AND MGR

3.1 ALGORITHM 1: CONVERSION FROM MGN TO MGR

INPUT: MGN $\Gamma = (G_1, G_2, ..., G_n, Q)$ **OUTPUT:** MGR $\Gamma' = (G_1, G_2, ..., G_n, Q'); L_X(\Gamma) = L_X(\Gamma'),$ for each $X \in \{union, conc, lm\}$

METHOD:

Let $G_i = (N_i, T_i, P_i, S_i)$ for all i = 1, ..., n, then:

• $Q' := \{(A_1 \to x_1, A_2 \to x_2, ..., A_n \to x_n): A_i \to x_i \in P_i \text{ for all } i = 1, ..., n, \text{ and} (A_1, A_2, ..., A_n) \in Q \}$

3.2 ALGORITHM 2: CONVERSION FROM MGR TO MGN

INPUT: MGR $\Gamma = (G_1, G_2, ..., G_n, Q)$

OUTPUT: MGN $\Gamma' = (G'_1, G'_2, ..., G'_n, Q'); L_X(\Gamma) = L_X(\Gamma'),$ where $X \in \{union, conc, lm\}$

METHOD:

Let $G_i = (N_i, T_i, P_i, S_i)$ for all i = 1, ..., n, then:

- $G'_i = (N'_i, T_i, P'_i, S_i)$ for all i = 1, ..., n, where:
 - $N_i := \{ < A, x > : A \to x \in P_i \} \cup \{ S_i \},$
 - $P'_i := \{ \langle A, x \rangle \to y : A \to x \in P_i, y \in \tau_i(x) \} \cup \{ S_i \to y : y \in \tau_i(S_i) \},$

where τ_i is a substitution from $N_i \cup T_i$ to $N_i \cup T_i$ defined as:

 $\tau_i(a) = \{a\}$ for all $a \in T_i$; $\tau_i(A) = \{\langle A, x \rangle : A \to x \in P_i\}$ for all $A \in N_i$.

• $Q' := \{(<A_1, x_1 >, <A_2, x_2 >, ..., <A_n, x_n >: (A_1 \to x_1, A_2 \to x_2, ..., A_n \to x_n) \in Q\}$ $\cup \{(S_1, S_2, ..., S_n)\}$

3.3 COROLLARY

The class of languages generated by MGNs in the X mode, where $X \in \{union, conc, lm\}$ is equivalent with the class of language generated by MGRs in the X mode.

Proof:

This corollary follows from Algorithm 1 and Algorithm 2.

4 GENERATIVE POWER OF MGN AND MGR

4.1 CLAIM

For every recursive enumerable language L over an alphabet T there exist a MGR,

$$\Gamma = ((N'_1, T, P'_1, S_1), (N'_2, T, P'_2, S_2), Q)$$
, such that:

- 1) $L = \{w: (S_1, S_2) \Rightarrow^* (w, w)\},\$
- 2) $\{w_1w_2: (S_1, S_2) \Rightarrow^* (w_1, w_2), w_1, w_2 \in T^*, w_1 \neq w_2\} = \emptyset.$

4.2 THEOREM 1:

For every recursive enumerable language L over an alphabet T there exist a MGR,

 $\Gamma = (G_1, G_2, Q)$, such that: $L_{union}(\Gamma) = L$.

4.3 THEOREM 2:

For every recursive enumerable language L over an alphabet T there exist a MGR,

 $\Gamma = (G_1, G_2, Q)$, such that: $L_{lm}(\Gamma) = L$.

4.4 **THEOREM 3**:

For every recursive enumerable language L over an alphabet T there exist a MGR,

 $\Gamma = (G_1, G_2, Q)$, such that: $L_{conc}(\Gamma) = L$.

5 CONCLUSION

Let $L(MGN_X)$ and $L(MGR_X)$ denote the language families defined by MGN in the *X* mode and MGR in the *X* mode, respectively, where $X \in \{union, conc, lm\}$. From the previous results, we obtain $L(RE) = L(MGN_X) = L(MGR_X)$.

REFERENCES

[1] Meduna, A: Automata and Languages: Theory and Applications. Springer, London, 2000

[2] Salomaa, A: Formal Languages. Academic Press, 1973