MULTIGENERATIVE GRAMMAR SYSTEMS

Ing. Roman LUKÁŠ, Doctoral Degree Programme (1)
Dept. of Information Systems, FIT, BUT
E-mail: lukas@fit.vutbr.cz

Supervised by: Dr. Alexander Meduna

Abstract

This paper presents new models for all recursive enumerable languages. These models are based on multigenerative grammar systems that simultaneously generate several strings in a parallel way. The components of these models are context-free grammars, working in a leftmost way. The rewritten nonterminals are determined by a finite set of nonterminal sequences.

1 N-MULTIGENERATIVE NONTERMINAL-SYNCHRONIZED GRAMMAR SYSTEM

1.1 BASIC DEFINITION

An n-multigenerative nonterminal-synchronized grammar system (MGN) is $n+1$ tuple

$$
\Gamma=\left(G_{1}, G_{2}, \ldots, G_{n}, Q\right), \text { where: }
$$

- $G_{i}=\left(N_{i}, T_{i}, P_{i}, S_{i}\right)$ is a context-free grammar for each $i=1, \ldots, n$,
- Q is a finite set of n-tuples of the form $\left(A_{1}, A_{2}, \ldots, A_{n}\right)$, where $A_{i} \in N_{i}$
for all $i=1, \ldots, n$.

1.2 SENTENTIAL N-FORM

Let $\Gamma=\left(G_{1}, G_{2}, \ldots, G_{n}, Q\right)$ be a MGN. Then a sentential n-form of $M G N$ is an n-tuple of the form $\chi=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, where $x_{i} \in\left(N_{i} \cup T_{i}\right)^{*}$ for all $i=1, \ldots, n$.

1.3 DIRECT DERIVATION STEP

Let $\Gamma=\left(G_{1}, G_{2}, \ldots, G_{n}, Q\right)$ be a MGN. Let $\chi=\left(u_{1} A_{1} v_{1}, u_{2} A_{2} v_{2}, \ldots, u_{n} A_{n} v_{n}\right)$ and $\chi^{\prime}=$ $\left(u_{1} x_{1} v_{1}, u_{2} x_{2} v_{2}, \ldots, u_{n} x_{n} v_{n}\right)$ are two sentential n-form, where $A_{i} \in N_{i}, u_{i} \in T_{i}^{*}$, and $v_{i}, x_{i} \in\left(N_{i} \cup\right.$ $\left.T_{i}\right)^{*}$ for all $i=1, \ldots, n$. Let $A_{i} \rightarrow x_{i} \in P_{i}$ for all all $i=1, \ldots, n$ and $\left(A_{1}, A_{2}, \ldots, A_{n}\right) \in Q$. Then χ directly derives χ ' in Γ, denoted by $\chi \Rightarrow \chi^{\prime}$.

1.4 SEQUENCE OF DERIVATION STEPS, PART 1

Let $\Gamma=\left(G_{1}, G_{2}, \ldots, G_{n}, Q\right)$ be a MGN.

- Let χ by any sentential n-form of Γ. Γ makes a zero-step derivation from χ to χ, which is written as $\chi \Rightarrow^{0} \chi$.
- Let there exists a sequence of sentential n-forms $\chi_{0}, \chi_{1}, \ldots, \chi_{k}$ for some $k \geq 1$ such that $\chi_{i-1} \Rightarrow \chi_{i}$ for all $i=1, \ldots, k$. Then, Γ makes n-step derivation from χ_{0} to χ_{k}, which is written as $\chi_{0} \Rightarrow^{n} \chi_{k}$.

1.5 SEQUENCE OF DERIVATION STEPS, PART 2

Let $\Gamma=\left(G_{1}, G_{2}, \ldots, G_{n}, Q\right)$ be a MGN, let χ and χ ' be two sentential n-forms of Γ.

- If there exists $k \geq 1$ so $\chi \Rightarrow^{k} \chi^{\prime}$ in Γ, then $\chi \Rightarrow^{+} \chi^{\prime}$,
- If there exists $k \geq 0$ so $\chi \Rightarrow^{k} \chi$, in Γ, then $\chi \Rightarrow^{*} \chi^{\prime}$.

1.6 N-LANGUAGE

Let $\Gamma=\left(G_{1}, G_{2}, \ldots, G_{n}, Q\right)$ be a MGN. The n-language of $\Gamma, n-L(\Gamma)$, is defined as: $n-L(\Gamma)=\left\{\left(w_{1}, w_{2}, \ldots, w_{n}\right):\left(S_{1}, S_{2}, \ldots, S_{n}\right) \Rightarrow^{*}\left(w_{1}, w_{2}, \ldots, w_{n}\right), w_{i} \in T_{i}^{*}\right.$ for all $\left.i=1, \ldots, n\right\}$

1.7 THREE TYPES OF GENERATED LANGUAGES

- The language generated by Γ in the union mode, $L_{\text {union }}(\Gamma)$, is defined as: $L_{\text {union }}(\Gamma)=\left\{w:\left(w_{1}, w_{2}, \ldots, w_{n}\right) \in n-L(\Gamma), w \in\left\{w_{i}: i=1, \ldots, n\right\}\right\}$
- The language generated by Γ in the concatenation mode, $L_{\text {conc }}(\Gamma)$, is defined as: $L_{\text {conc }}(\Gamma)=\left\{w_{1} w_{2} \ldots w_{n}:\left(w_{1}, w_{2}, \ldots, w_{n}\right) \in n-L(\Gamma)\right\}$
- The language generated by Γ in the leftmost mode, $L_{l m}(\Gamma)$, is defined as:
$L_{l m}(\Gamma)=\left\{w_{1}:\left(w_{1}, w_{2}, \ldots, w_{n}\right) \in n-L(\Gamma)\right\}$

1.8 EXAMPLE

$\Gamma=\left(G_{1}, G_{2}, Q\right)$, where:

- $G_{1}=\left(\left\{S_{1}, A_{1}\right\},\{a, b, c\},\left\{S_{1} \rightarrow a S_{1}, S_{1} \rightarrow a A_{1}, A_{1} \rightarrow b A_{1} c, A_{1} \rightarrow b c\right\}, S_{1}\right)$,
- $G_{2}=\left(\left\{S_{2}, A_{2}\right\},\{d\},\left\{S_{2} \rightarrow S_{2} A_{2}, S_{2} \rightarrow A_{2}, A_{2} \rightarrow d\right\}, S_{2}\right)$,
- $\quad Q=\left\{\left(S_{1}, A_{1}\right),\left(S_{2}, A_{2}\right)\right\}$
is a 2-multigenerative nonterminal-synchronized grammar system.
Notice that this system generates following languages in the different modes:
- $L_{\text {union }}(\Gamma)=\left\{a^{n} b^{n} c^{n}: n \geq 1\right\} \cup\left\{d^{n}: n \geq 1\right\}$,
- $L_{\text {conc }}(\Gamma)=\left\{a^{n} b^{n} c^{n} d^{n}: n \geq 1\right\}$,
- $L_{l m}(\Gamma)=\left\{a^{n} b^{n} c^{n}: n \geq 1\right\}$.

2 N-MULTIGENERATIVE RULE-SYNCHRONIZED GRAMMAR SYSTEM

2.1 BASIC DEFINITION

An n-multigenerative rule-synchronized grammar system (MGR) is $n+1$ tuple

$$
\Gamma=\left(G_{1}, G_{2}, \ldots, G_{n}, Q\right) \text {, where: }
$$

- $\quad G_{i}=\left(N_{i}, T_{i}, P_{i}, S_{i}\right)$ is a context-free grammar for each $i=1, \ldots, n$,
- Q is a finite set of n-tuples of the form $\left(p_{1}, p_{2}, \ldots, p_{n}\right)$, where $p_{i} \in P_{i}$
for all $i=1, \ldots, n$.

2.2 SENTENTIAL N-FORM

A sentential n-form for MGR is defined analogically as the sentential n-form for a MGN.

2.3 DIRECT DERIVATION STEP

Let $\Gamma=\left(G_{1}, G_{2}, \ldots, G_{n}, Q\right)$ be a MGR. Let $\chi=\left(u_{1} A_{1} v_{1}, u_{2} A_{2} v_{2}, \ldots, u_{n} A_{n} v_{n}\right)$ and $\chi^{\prime}=$ $\left(u_{1} x_{1} v_{1}, u_{2} x_{2} v_{2}, \ldots, u_{n} x_{n} v_{n}\right)$ are two sentential n-form, where $A_{i} \in N_{i}, u_{i} \in T_{i}^{*}$, and $v_{i}, x_{i} \in\left(N_{i} \cup\right.$ $\left.T_{i}\right)^{*}$ for all $i=1, \ldots, n$. Let $p_{i}: A_{i} \rightarrow x_{i} \in P_{i}$ for all all $i=1, \ldots, n$ and $\left(p_{1}, p_{2}, \ldots, p_{n}\right) \in Q$. Then χ directly derives χ^{\prime} in Γ, denoted by $\chi \Rightarrow \chi^{\prime}$.

2.4 SEQUENCE OF DERIVATION STEPS

A sequence of derivation steps for MGR is defined analogically as the sequence of derivation steps for a MGN.

2.5 N-LANGUAGE

An n-language for MGR is defined analogically as the n-language for a MGN.

2.6 THREE TYPES OF GENERATED LANGUAGES

A language generated by MGN in the X mode, for each $X \in\{$ union, conc, lm $\}$, is defined analogically as the language generated by MGR in the X mode.

2.7 EXAMPLE

$\Gamma=\left(G_{1}, G_{2}, Q\right)$, where:

- $G_{1}=\left(\left\{S_{1}, A_{1}\right\},\{a, b, c\},\left\{\mathbf{1}: S_{1} \rightarrow a S_{1}, \mathbf{2}: S_{1} \rightarrow a A_{1}, \mathbf{3}: A_{1} \rightarrow b A_{1} c, \mathbf{4}: A_{1} \rightarrow b c\right\}, S_{1}\right)$,
- $G_{2}=\left(\left\{S_{2}\right\},\{d\},\left\{\mathbf{1}: S_{2} \rightarrow S_{2} S_{2}, \mathbf{2}: S_{2} \rightarrow S_{2}, \mathbf{3}: S_{2} \rightarrow d\right\}, S_{2}\right)$,
- $Q=\{(\mathbf{1}, \mathbf{1}),(\mathbf{2}, \mathbf{2}),(\mathbf{3}, \mathbf{3}),(\mathbf{4}, \mathbf{3})\}$.
is 2-multigenerative rule-synchronized grammar system.

Notice that this system generates following languages in the different modes:

- $L_{\text {union }}(\Gamma)=\left\{a^{n} b^{n} c^{n}: n \geq 1\right\} \cup\left\{d^{n}: n \geq 1\right\}$,
- $L_{\text {conc }}(\Gamma)=\left\{a^{n} b^{n} c^{n} d^{n}: n \geq 1\right\}$,
- $\quad L_{l m}(\Gamma)=\left\{a^{n} b^{n} c^{n}: n \geq 1\right\}$.

3
 CONVERSIONS BETWEEN MGN AND MGR

3.1 ALGORITHM 1: CONVERSION FROM MGN TO MGR

INPUT: MGN $\Gamma=\left(G_{1}, G_{2}, \ldots, G_{n}, Q\right)$
OUTPUT: MGR $\Gamma^{\prime}=\left(G_{1}, G_{2}, \ldots, G_{n}, Q^{\prime}\right) ; L_{X}(\Gamma)=L_{X}\left(\Gamma^{\prime}\right)$, for each $X \in\{$ union, conc, $l m\}$

METHOD:

Let $G_{i}=\left(N_{i}, T_{i}, P_{i}, S_{i}\right)$ for all $i=1, \ldots, n$, then:

- $Q^{\prime}:=\left\{\left(A_{1} \rightarrow x_{1}, A_{2} \rightarrow x_{2}, \ldots, A_{n} \rightarrow x_{n}\right): A_{i} \rightarrow x_{i} \in P_{i}\right.$ for all $i=1, \ldots, n$, and

$$
\left.\left(A_{1}, A_{2}, \ldots, A_{n}\right) \in Q\right\}
$$

3.2 ALGORITHM 2: CONVERSION FROM MGR TO MGN

INPUT: $\operatorname{MGR} \Gamma=\left(G_{1}, G_{2}, \ldots, G_{n}, Q\right)$
OUTPUT: MGN $\Gamma^{\prime}=\left(G^{\prime}{ }_{1}, G^{\prime}{ }_{2}, \ldots, G^{\prime}{ }_{n}, Q^{\prime}\right) ; L_{X}(\Gamma)=L_{X}\left(\Gamma^{\prime}\right)$, where $X \in\{$ union, conc, $l m\}$

METHOD:

Let $G_{i}=\left(N_{i}, T_{i}, P_{i}, S_{i}\right)$ for all $i=1, \ldots, n$, then:

- $G^{\prime}{ }_{i}=\left(N^{\prime}, T_{i}, P^{\prime}{ }_{i}, S_{i}\right)$ for all $i=1, \ldots, n$, where:
- $N^{\prime}:=\left\{<A, x>: A \rightarrow x \in P_{i}\right\} \cup\left\{S_{i}\right\}$,
- $P^{\prime}{ }_{i}:=\left\{<A, x>\rightarrow y: A \rightarrow x \in P_{i}, y \in \tau_{i}(x)\right\} \cup\left\{S_{i} \rightarrow y: y \in \tau_{i}\left(S_{i}\right)\right\}$, where τ_{i} is a substitution from $N_{i} \cup T_{i}$ to $N_{i} \cup T_{i}$ defined as:
$\tau_{i}(a)=\{a\}$ for all $a \in T_{i} ; \tau_{i}(A)=\left\{\langle A, x\rangle: A \rightarrow x \in P_{i}\right\}$ for all $A \in N_{i}$.
- $Q^{\prime}:=\left\{\left(<A_{1}, x_{1}>,<A_{2}, x_{2}>, \ldots,<A_{n}, x_{n}>:\left(A_{1} \rightarrow x_{1}, A_{2} \rightarrow x_{2}, \ldots, A_{n} \rightarrow x_{n}\right) \in Q\right\}\right.$ $\cup\left\{\left(S_{1}, S_{2}, \ldots, S_{n}\right)\right\}$

3.3 COROLLARY

The class of languages generated by MGNs in the X mode, where $X \in\{$ union, conc, $l m\}$ is equivalent with the class of language generated by MGRs in the X mode.

Proof:

This corollary follows from Algorithm 1 and Algorithm 2.

4 GENERATIVE POWER OF MGN AND MGR

4.1 CLAIM

For every recursive enumerable language L over an alphabet T there exist a MGR, $\Gamma=\left(\left(N^{\prime}, T, P^{\prime}{ }_{1}, S_{1}\right),\left(N^{\prime}{ }_{2}, T, P^{\prime}{ }_{2}, S_{2}\right), Q\right)$, such that:

1) $L=\left\{w:\left(S_{1}, S_{2}\right) \Rightarrow^{*}(w, w)\right\}$,
2) $\left\{w_{1} w_{2}:\left(S_{1}, S_{2}\right) \Rightarrow^{*}\left(w_{1}, w_{2}\right), w_{1}, w_{2} \in T^{*}, w_{1} \neq w_{2}\right\}=\varnothing$.

4.2 THEOREM 1:

For every recursive enumerable language L over an alphabet T there exist a MGR,

$$
\Gamma=\left(G_{1}, G_{2}, Q\right) \text {, such that: } L_{\text {union }}(\Gamma)=L .
$$

4.3 THEOREM 2:

For every recursive enumerable language L over an alphabet T there exist a MGR,

$$
\Gamma=\left(G_{1}, G_{2}, Q\right), \text { such that: } L_{l m}(\Gamma)=L .
$$

4.4 THEOREM 3:

For every recursive enumerable language L over an alphabet T there exist a MGR,

$$
\Gamma=\left(G_{1}, G_{2}, Q\right) \text {, such that: } L_{\text {conc }}(\Gamma)=L \text {. }
$$

5 CONCLUSION

Let $L\left(\mathrm{MGN}_{X}\right)$ and $L\left(\mathrm{MGR}_{X}\right)$ denote the language families defined by MGN in the X mode and MGR in the X mode, respectively, where $X \in\{$ union, conc, $l m\}$. From the previous results, we obtain $L(\mathrm{RE})=L\left(\mathrm{MGN}_{X}\right)=L\left(\mathrm{MGR}_{X}\right)$.

REFERENCES

[1] Meduna, A: Automata and Languages: Theory and Applications. Springer, London, 2000
[2] Salomaa, A: Formal Languages. Academic Press, 1973

