
ON VERTICAL RESTRICTIONS OF GRAMMATICAL
DERIVATIONS

Ing. Tomáš KOPĚCEK, Doctoral Degree Programme (1)
Dept. of Information Systems, FIT, BUT

E-mail: kopecek@fit.vutbr.cz

Supervised by: Dr. Alexander Meduna

ABSTRACT

Traditional formal language theory is interested in some versions of grammars which
are restricted in some ways. Most of them have restrictions in the form, which applies to
current or following sentence. The others use some regulation on rewriting mechanism.

We introduce new view — vertical restrictions. We could imagine derivation process
as a table of derivations. When we set some boundaries going across the table we can see
something like vertical splitting. In these terms we examine some restrictions and power
of resulting grammars.

1 INTRODUCTION

We can imagine derivation process (in any type of grammar) as a table 1.

S ⇒ x11 x12 . . . x1m
⇒ x21 x22 . . . x2m
...
⇒ xn1 xn2 . . . xnm

Table 1: Derivation process

We can see, that in each step we have split derived sentence intom strings. As we
also know, most of the strings will be empty. In the advanced stages of rewriting there will
be more and more non-empty strings. The final line will have all strings non-empty.

Based on this approach we define new grammar, which will be almost context-free.
Context-sensitive productions will be limited to formab→ cd and application of these
rules can be applied only on boundary. So, ifx11 = klmaandx12 = bpq, we could apply
previous rule on this boundary.

Further we restricts number of use of context-sensitive productions on each boundary.
We can show, that under these restrictions is the power grammar (which looks like context-
sensitive) limited to family of context-free languages.

2 DEFINITIONS

We assume that the reader is familiar with the language theory (see [1]).
Let V be an alphabet. The cardinality ofV is denoted by #V . V∗ represents the free

monoid generated byV under the operation of concatenation. The unit ofV is denoted
by ε. SetV+ = V∗−{ε}; algebraically,V+ is thus the free semigroup generated byV
under the operation of concatenation. For every symbolX ∈V,#Xw denotes the number of
occurrences ofX in w.

A context-free grammaris a quadruple,G = (V,T,P,S), whereV is an alphabet,T ⊆
V, andS∈V−T. P is a finite set of productions of the formA→ x, whereA∈V−T and
x∈V∗. If A→ x∈ P andu,v∈V∗, thenuAv⇒G uxv in G. Let⇒∗

G denote the transitive-
reflexive closure of⇒G. The language ofG, L(G), is defined asL(G) = {y:S⇒∗

G y,y∈
T∗}.

An extended finite automatonis ann-tupleM = (Q,Σ,R,s,F), whereQ is a finite set
of inner automaton states,Σ is an finite input alphabet,R is a finite set of transition rules of
the formpxy→ qy, p,q∈ Q,x,y∈ Σ∗, s is a starting state ofM, s∈ Q andF ⊆ Q is a set
of final states. Configuration of such automaton will be denoted byχ = qx,q∈ Q,x∈ Σ∗,
wherex means the input string. Automaton makes a computation step (transition) from
configurationqxy,q∈Q,x,y∈ Σ∗ to py, p∈Q denoted byqxy`M py if exist transition rule
qx→ p∈R. `∗G denotes transitive and reflexive closure of relation`M. Language accepted
by M is L(M) = {x : sx`∗M f ,x∈ Σ∗, f ∈ F}.

3 RESULTS

We define new grammarG = (V,T,P,S) derived from Kuroda normal form. Its sets
V,T and symbolS have the same meaning as in context-free grammars. SetP contains
productions in these forms:

1. AB→CD,A,B,C,D ∈V−T

2. A→ BC,A,B,C∈V−T

3. A→ a,A∈V,a∈ T

4. A→ ε,A∈V

It is a definition of Kuroda normal form. Now we attach some limitations to this grammar.
If G makesxABy⇒ xCDyby usingAB→CD, we say thatxAByis rewritten between

xAandBy in a context way.
Derivation process could be described by table 1. This derivation have to respect

these rules:

1. m≥ 1

2. |xi j | ≤ k

3. for all n = 2, . . . ,m there existsxr n ∈ V+ such that for allq = 1, . . . ,n ando = n+
1, . . . ,m, holdsxqo = ε

4. for eachd = 1, . . . ,m−1, there exist no more thatl substrings of the formxcdxcd+1,
where 1≤ c≤ n, such thatxcdxcd+1 is rewritten betweenxcd andxcd+1 in a context
way.

We can see, that this grammar is very similar to Kuroda normal form. More precisely,
there are only added restrictions on a number of context rewritings in one “column”.

So, we can expect, that family of languages generated by this grammar will be equal
to family of recursively enumerable languages.

Claim 1. Grammar G generates precisely the family of regular languages.

Proof. We prove claim 1 by simulatingG with extended finite automaton. We now show
construction of such automaton which accept language if and only if final state is reached
and input tape is empty.

Construction2. ConstructM = (Q,T,R,s,{ f}) in the following way:

• Q = { f}∪{〈A,u,α,X,v〉 : 〈A,u,α,X,v〉 6= f
A∈V,X ∈ T ∪{ε},α ∈V∗, |α| ≤ k,u,v∈ P∗CS, |u|, |v| ≤ l}

• s= 〈S,ε,ε,ε,ε〉

• R is constructed by performing following steps:

1. For everyx∈ T∗ with |x| ≤ k add rules toR in this form:
〈X,u,ε,ε,ε,〉x→ 〈X,u,x,ε,ε〉.

2. For everya∈ T ∪{ε} and ruleA→ a in G add these rules toR:
〈X,u,αaβ,Y,v〉 → 〈X,u,αAβ,Y,v〉

3. For everyA∈ N add these rules toR:
〈X,ε,ε,Y,v〉 → 〈Y,v,ε,ε,ε〉

4. For everyAB→CD in G add these rules intoR:

(a) 〈X,u,βC,ε,v〉 → 〈X,u,αA,ε,vAB→CD〉
(b) 〈X,AB→CDu,Dβ,X,v〉 → 〈X,u,Bα,X,v〉

5. For everyA→ BC in G add these rules intoR:

(a) 〈X,u,αBCβ,Y,v〉 → 〈X,u,αAβ,Y,v〉
(b) 〈A,ε,B,ε,v〉 → 〈C,v,ε,ε,ε〉

6. Add〈A,ε,A,ε,ε〉 → f to R.

We should observe, that number of states and transition rules could be very large but
definitely finite. So we have an correct extended automaton by the definition.

We could do another step which can possibly reduce number of states. After gener-
atingRwe remove unreachable states by some well-known alogrithm.

Non-formal description of each component of automaton state is:

1. This part remembers symbol on the top of derivation tree. Clearly, the symbol to
whichM should reduce its input.

2. Here are remembered uses of context-sensitive rules from previous column. All these
should be eliminated by their use in proper time.

3. This is a rewritten string according to actual column. In the start of the simulation it
is equal to an input string. In the end ti should be equal to first component.

4. Here is saved new head of sub-tree for next column. In the next pass it will become
the first component.

5. Here are saved all uses of context-sensitive rules. In the next pass it will become the
second component.

Automaton will work in such way: It will read input matching one column. This
input will be reduced to symbolS. If this is all input, then the computation ends in state
f . Otherwise (possibly, because there were used context-sensitive rules), it will read input
for next column and continue computation, until all input is read and final state is reached.
Automaton has to check context-sensitive rewritings and remember their positions, so they
can be completed in next column (same checking has to be done for rewritings of the form
A→ BC crossing the borders of columns. As we see further, only case for this, is when
C becomes the head of next column derivation sub-tree. It have to be checked by other
mechanism (5b). Use of such rule triggers the move to the following column.

Example3. We have this grammar with vertical restrictions:G = (V,T,P,S)

V = {S,A,B,C,D}
T = {a,b,c,d}P = {S→ AB,A→ S,B→ S,AB→CD,C→ c,D→ d}

which generates languageL(G) = {(cd)n,n≥ 1}
Shortest successful derivation in this grammar looks asS→ AB→CD→ cD→ cd.

This derivation can be simulated by automaton obtained from Construction 2 as:

〈S,ε,ε,ε,ε〉cd
`M 〈S,ε,c,ε,ε〉d [1]
`M 〈S,ε,C,ε,ε〉d [2]
`M 〈S,ε,A,ε,AB→CD〉d [4a]
`M 〈B,AB→CD,ε,ε〉d [5b]
`M 〈B,AB→CD,d,ε,ε〉 [1]
`M 〈B,AB→CD,D,ε,ε〉 [2]
`M 〈B,ε,B,ε,ε〉 [4b]
`M f [6]

Furthermore, we could see, thatL(G) is regular, so it can be described by simpler
(and regular) grammar, e. g.G′ = ({S,A},{c,d},{S→ Acd,A→ cd,A→ ε},S),L(G) =
L(M) = L(G′), without any restrictions.

Corollary 4. Q accepts every x∈ L(G), so L(G)⊆ L(Q).

Proof. Any derivation step inG could be expressed asx ⇒G y. Stringsx andy could be
described asx = |α1|α2| . . . |αm| andy = |α1|α2| . . . |βi |βi+1| . . . |αm| (see Table 1).

Without loss of generality we examine only cases of strings|αi |αi+1|, |βi |βi +1|, so:

1. αi+1 = βi+1

First two strings are exactly same, so derivation step occurs in the others two. So
there exist derivationαi → βi . This derivation have to be done by one of following
rules:

(a) A→ BC∈ P, thenαi = γ1Aγ2 andβi = γ1BCγ2. This kind of step is simulated
by this transition rule inM: 〈X,u,γ1BCγ2,Y,v〉 → 〈X,u,γ1Aγ2,Y,v〉 which was
created by point 5a in Construction 2.

(b) A→ a∈ P. This is the same as preceding case. Only stringBC is substituted
by a and we use point 2.

2. αi = βi

All steps from preceding point are repeated. (No matter what string are equal, more
important is that changing of sentence is inside of section.)

3. αi 6= βi ,αi+1 6= βi+1

Rewriting occurs across borders of sections. It could happen only in two following
cases:

(a) AB→CD. In this case strings look like these:αi = γ1A,αi+1 = Bγ2 andβi =
γ1C,βi+1 = Dγ2. For this situation we have created transition rules 4a and 4b.
First one handle this situation in segmenti and second one in the following
segment. Cooperation of these rules is handled by fourth (respectively second)
member of state.

(b) A → BC. In this case strings look like these:αi = A,αi+1 = γ2 and βi =
B,βi+1 = Cγ2. For this case we have rule 5b.

In case all input was read and automaton has followed grammarG we have to be in
some state of〈A,ε,A,ε,ε〉. From this state we can transit to statef by point 6 of Construc-
tion 2.

Corollary 5. G generates all strings accepted by Q, so L(Q)⊆ L(G).

Proof. Because of limited space we have to leave this part of proof on reader.

From Corollaries 4, 5 and equivalency of regular languages and extended finite au-
tomatons, we can see, that Claim 1 holds.

REFERENCES

[1] Meduna, A.: Automata and Languages: Theory and Applications, Springer, London,
2000

