

TWO-WAY PC GRAMMAR SYSTEMS BASED ON REGULAR
GRAMMARS

Ing. Petr Kaláb, Doctoral Degreee Programme (2)
Dept. of Information Systems, FIT, BUT

E-mail: kalabp@fit.vutbr.cz

Supervised by Dr. Alexander Meduna

ABSTRACT
Besides derivation and communication steps, a two-way PC grammar system can make

a reduction step during which it reduces the right-hand side of a context-free production to its
left hand-side. This paper proves that every non-unary recursively enumerable language is
defined by a centralized two-way grammar system, Γ, with three components in a very
economical way. Indeed, Γ’s master has only three nonterminals and one communication
production; furthermore, it produces all sentential forms with no more than two occurrences
of nonterminals. In addition, during every computation, Γ makes a single communication
step. Some variants of two-way PC grammar system are discussed in the conclusion of this
paper.

1 INTRODUCION

The formal language theory has intensively investigated various variants of PC
grammar systems, which consist of several components, represented by grammars. This paper
introduces some variant of two-way PC grammar systems, which make three kinds of
computational steps derivation, reduction, and communication. More precisely, a two-way
PC grammar system, Γ, makes a derivation step as usual; that is, it rewrites the left-hand side
of a production with its right-hand side. In a reduction step Γ rewrites the right-hand side with
the left hand-side. Finally, Γ makes a communication step in a usual PC-grammar-system
way; in addition, however, after making this step, it changes the computational way from
derivations to reductions and vise versa.

This paper discusses the centralized form of two-way PC grammar systems working in a
non-returning mode. That is, since they are centralized, only their first components, called the
masters, can cause these systems to make a communication step. A non-returning mode
means that after communication step, the components of grammar system continue to process
the current string rather than return to their axioms. The present paper concentrates its
discussion on their descriptional complexity because this complexity represents an intensively
studied area of today’s formal language theory.

This paper proves that the centralized (2-CF, RLIN, LLIN) two-way 3-PC grammar

systems characterize the family of non-unary recursively enumerable languages in a very
economical way. Indeed, every non-unary recursively enumerable language is defined by a
centralized (2-CF, RLIN, LLIN) two-way 3-PC grammar system with one context-free
component, one right-linear component and one left-linear component so that during every
computation Γ makes a single communication step. In addition, Γ’s three-nonterminal master
has only one production with a communication symbol and any of its sentential forms
contains no more than two occurrences of nonterminals.

2 DEFINITION

Let k and n be two positive integers. A two-way k-context-free PC component is a
quadruple, G = (N, T, P, S), where N and T are two disjoint alphabets. Symbols in N and T are
referred to as nonterminal and terminals, respectively, and S ∈ N is the start symbol of G. Set
M = N \{S}. P is a finite set of productions such that each r ∈ P has one of these forms

S → x, where x ∈ (T ∪ M)* and x contains no more than k occurrences of symbols from
M,

A → x, where A ∈ M, x ∈T*MT* ∪ T* and x contains no more than k occurrences of
symbols from M.

Let u, v ∈ (N ∪ T)*. For every A → x ∈ P, write uAv d⇒ uxv and uxv r⇒ uAv; d and r
stand for a direct derivation and a direct reduction, respectively. To express that G makes uAv
d⇒ uxv according to A → x, write uAv d⇒ uxv [A → x]; uxv r⇒ uAv [A → x] have an
analogical meaning in terms of r⇒. A two-way k-context-free n-PC grammar system is an n +
1 tuple

Γ = (Q, G1, …, Gn),

where Q = { qi : i = 1, …, n}, whose members are called query symbols, and for all i =
1, …, n, Gi = (Q ∪ Ni, T, Pi, Si) is a two-way k-context-free PC component such that Q ∩ (Ni
∪ T) = ∅ (notice that each Gi has the same terminal alphabet, T); let q-Pi ⊆ Pi denote the set
of all productions in Pi containing a query symbol. A configuration is an n-tuple of the form
(x1, …, xn), where xi ∈ (Q ∪ Ni ∪ T)*, 1 ≤ i ≤ n. The start configuration, σ, is defined as σ =
(S1, …, Sn). Let Θ denote the set of all configurations of Γ. For evey x ∈ Θ and i = 1, …, n, i-x
denote its ith componentthat is, if x = (x1, …, xi,…, xn), then i-x = xi. For every x
∈ Θ, define the mapping xθ over {i-x: 1 ≤ i ≤ n} as xθ(i-x) = z1z2... z|i-x| where for all 1 ≤ h ≤ |i-
x|, if for some qj ∈ Q, i = 1, …, n, sym(i-x, h) = qj and alph(j-x) ∩ Q = ∅, then zh = j-x;
otherwise (that is, sym(i-x, h) ∉ Q or alph(j-x) ∩ Q ≠ ∅), zh = sym(i-x, h).

Let y, x ∈ Θ. Write

• y d⇒ x in G if i-y d⇒ i-x in Gi or i-y = i-x with i-y, i-x ∈ T*, for all i = 1, …, n

• y r⇒ x in G if i-y r⇒ i-x in Gi or i-y = i-x with i-y, i-x ∈ {Si} ∪ T*, for all i = 1, …, n

• y q⇒ x in G if i-x = θ(i-y) in G for all i = 1, …, n

Informally, Γ works in three computational modes – d⇒, r⇒, q⇒, which symbolically
represent a direct derivation, reduction, and communication, respectively. Let l ≥ 1, αj ∈ Θ, 1
≤ i ≤ l, and α0 l1⇒ α1 l2⇒ α2 … αl-1 ll⇒ αl, where lm ∈ {d, r, q}, 1 ≤ m ≤ l; write α0 ⇒* αl if l1
= d and each lp ∈ {d, r, q}, 2 ≤ p ≤ l - 1, satisfies:

• if lp = q then lp+1, lp-1 ∈ {d, r} and lp+1 ≠ lp-1

• if lp ∈ {d, r} then lp+1 ∈ {q, lp}

Informally, after making a communication step, Γ changes the computational mode
from d to r and vise versa; after making a derivation or reduction step, it does not. Consider
α0 ⇒* αl that consists of l direct computational steps, α0 l1⇒ α1 l2⇒ α2 … αl-1 ll⇒ αl,
satisfying the above properties. Set κ(α0 ⇒* αl) = {α0, α1, …, αl}; that is, κ(α0 ⇒* αl)
denotes the set of all configurations occurring in α0 ⇒* αl . Furthermore, for each l = 1, …, n,
set κ(i−α0 ⇒* i−αl) = { i−β: β ∈ κ(α0 ⇒* αl)}. Finally, for each h = 1, …, n, h-
computation(i−α0 ⇒* i−αl) denotes h-α0 l1⇒ h-α1 l2⇒ h-α2 … h-αl-1 ll⇒ h-αl. The language
of Γ, L(Γ), is defined as

L(Γ) = { z ∈ T*: σ ⇒* α in Γ with z = del(1-α, S1), for some α ∈ Θ}

Informally, L(Γ) contains z ∈ T* if and only if there exists α ∈ Θ such that σ ⇒* α in Γ
and the deletion of each S1 in 1-α results in z. A computation σ ⇒* α in Γ with del(1-α, S1)
∈ L(Γ) is said to be successful. By a two-way n-PC grammar system, we refer to any two-way
k-context-free n-PC grammar system, where k ≥ 1.

A two-way right-linear PC component is a quadruple, G = (N, T, P, S), where N and T
are two disjoint alphabets. Symbols in N and T are referred to as nonterminal and terminals,
respectively, and S ∈ N is the start symbol of G. P is a finite set of productions such that each
r ∈ P has one of these forms

A → xB, where x ∈ T* and A, B ∈ N or A → x, where A, B ∈ N and x ∈ T*.

Direct derivation and direct reduction are defined in a two-way k-context-free PC
component.

A two-way left-linear PC component is a quadruple, G = (N, T, P, S), where N and T are
two disjoint alphabets. Symbols in N and T are referred to as nonterminal and terminals,
respectively, and S ∈ N is the start symbol of G. P is a finite set of productions such that each
r ∈ P has one of these forms

A → Bx, where x ∈ T* and A, B ∈ N or A → x, where A, B ∈ N and x ∈ T*.

Direct derivation and direct reduction are defined in a two-way k-context-free PC
component.

A (2-CF, RLIN, LLIN) two-way 3–PC grammar system has 3 PC component: A two-way
2-context-free PC component, a two-way right-linear PC component and a two-way left-linear
PC component.

For a two-way k-context-free PC grammar system, Γ = (G1, …, Gn), we next introduce
some special notions.

Finite index. Let σ ⇒* x be any successful computation in Γ, where x ∈ Θ, and let i ∈
{1, …, n}. By i-index(σ ⇒* x), we denote the maximum number in length{keep(κ(i−σ ⇒*
i−x), Ni). If for every successful computation σ ⇒* ξ in Γ, where ξ ∈ Θ, there exists k ≥ 1
such that i-index(σ ⇒* ξ) ≤ k, Gi is of a finite index. If Gi is of a finite index, index(Gi)
denotes the minimum number h satisfying i-index(σ ⇒* ξ) ≤ h, for every successful
computation σ ⇒* ϖ in Γ, where ϖ ∈ Θ. By index(Gi) = ∞, we express that Gi is not of a
finite index. If Gj is of a finite index for all j = 1, …, n, Γ is of a finite index and index(Γ)

denotes the minimum number g satisfying index(Gl) ≤ g, for all l = 1, …, n. By index(Γ) = ∞,
we express that Γ is not of a finite index.

q-Degree. For σ ⇒* x in Γ, where x ∈ Θ, q-degree(σ ⇒* x) denotes the number of
communication steps (q⇒) in σ ⇒* x. If for every computation σ ⇒* ξ in Γ, where ξ ∈ Θ,
there exists k ≥ 1 such that q-degree(σ ⇒* ξ) ≤ k, Γ is of a finite q-degree. If Γ is of a finite
q-degree, q-degree(Γ) denotes the minimum number h satisfying q-degree(σ ⇒* ξ) ≤ h, for
every computation σ ⇒* ξ in Γ; by q-degree(Γ) = ∞, we express that Γ is not of a finite q-
degree.

Centralized Version. Γ is centralized if no query symbol occurs in any production of Pi
in Gi = (Ni, Ti, Pi, Si), for all i = 2, …, n. In other words, only P1 can contain some query
symbols, so G1, called the master of Γ, is the only component that can cause Γ to perform a
communication step.

3 MAIN RESULT

This section proves that every non-unary recursively enumerable language is defined by
a centralized (2-CF, RLIN, LLIN) two-way 3-PC grammar system, Γ = ({Q2, Q3}, G1, G2,
G3), such that index(G1) = 2, index(G2) = 1, index(G3) = 1, and q-degree(Γ) = 1. As a result,
index(Γ) = 2. In addition, its three-nonterminal master, G1, has only one production
containing a query symbols.

Lemma 1. For every recursively enumerable language, L, there exists a left-extended
queue grammar, Q, satisfying L(Q) = L.

Lemma 2 Let Q′ be a left-extended queue grammar. Then, there exists a left-extended
queue grammar, Q = (V, T, W, F, s, R), such that L(Q′) = L(Q), W = X ∪ Y ∪ {1}, where X, Y,
{1} are pairwise disjoint, and every (a, b, x, c) ∈ R satisfies either a ∈ V - T, b ∈ X, x ∈ (V -
T)*, c ∈ X ∪ {1} or a ∈ V - T, b ∈ Y ∪ {1}, x ∈ T*, c ∈ Y.

Lemma 4 Let Q be a left-extended queue grammar such that card(alph(L(Q))) ≥ 2.
Then, there exists a centralized (2-CF, RLIN, LLIN) two-way 3-PC grammar system, Γ =
({Q2, Q3}, G1, G2, G3), such that L(Γ) = L(Q), index(G1) = 2, index(G2) = 1, index(G3) = 1,
index(Γ) = 2, q-degree(Γ) = 1. In addition, Γ’s master, G1 = (Q ∪ N1, T, P1, S1), satisfies
card(N1) = 3 and q-P1 = {A YQ2Q3Y}.

Proof. Let Q = (V, T, W, F, s, R) be a left-extended queue grammar such that
card(alph(L(Q))) ≥ 2. Assume that {0, 1} ⊆ alph(L(G))) ∩ T. Furthermore, without any loss
of generality, assume that Q satisfies the properties described in Lemma 2 and Corollary
3. Observe that there exist a positive integer, n, and an injection, ι, from VW to ({0, 1}n - 1n)
so that ι remains an injection when its domain is extended to (VW)* in the standard way (after
this extension, ι thus represents an injection from (VW)* to ({0, 1}n - 1n)*), a proof of this
observation is simple and left to the reader. Based on ι, define the substitution, ν, from V to
({0, 1}n - 1n) as ν(a) = {ι(aq): q ∈ W} for every a ∈ V. Extend the domain of ν to V*.
Furthermore, define the substitution, µ, from W to ({0, 1}n - 1n) as µ(q) = { reversal(ι(aq)): a
∈ V} for every q ∈ W. Extend the domain of µ to W*. Set o = 1n.

Construction. Introduce the centralized (2-CF, RLIN, LLIN) two-way 3-PC grammar
system, Γ = ({Q2, Q3}, G1, G2, G3), where G1 = (Q ∪ N1, T, P1, S1), G2 = (N2, T, P2, S2), G3 =

(N3, T, P3, S3), N1 = { S1, A, Y}, and P1 = {S1 → oAo, S1 → oYo, A → YQ2Q3Y } ∪ {A →
reversal(x)Ax| x ∈ ι(VW)} ∪ {Y → xYx| x ∈ ι(VW)}. P2 and P3 are constructed as follows

1. if s = a0q0, where a0 ∈ V - T and q0 ∈ W - F,

then add S2 → u〈 q0, 1〉 to P2 and S3 → 〈 q0, 1〉t to P3, for all u ∈ ν(a0) and t ∈ µ(q0),

2. if (a, q, y, p) ∈ R, where a ∈ V - T, p, q ∈ W - F, and y ∈ (V - T)*,

then add 〈q, 1〉 → u〈p, 1〉 to P2 and 〈q, 1〉→〈p, 1〉t to P3, for all u ∈ν(y) and t ∈µ(p),

3. for every q ∈ W - F, add 〈q, 1〉 → o〈q, 2〉 to P2 and 〈q, 1〉 → 〈q, 2〉 to P3,

4. if (a, q, y, p) ∈ R, where a ∈ V - T, p, q ∈ W - F, y ∈ T*,

then add 〈q, 2〉 → y〈p, 2〉 to P2, 〈q, 2〉 → 〈p, 2〉t to P3, for all t ∈ µ(p),

5. if (a, q, y, p) ∈ R, where a ∈ V - T, q ∈ W - F, y ∈ T*, and p ∈ F,

then add 〈q, 2〉 → y to P2, 〈q, 2〉 → o to P3,

and N2 and N3 contains all symbols occurring in P2 and P3, respectively, that are not in T.

Theorem 5 Let L be a recursively enumerable language such that card(alph(L))) ≥ 2.
Then, there exists a centralized (2-CF, RLIN, LLIN) two-way 3-PC grammar system, Γ =
({Q2, Q3}, G1, G2, G3), such that L(Γ) = L, index(G1) = 2, index(G2) = 1, index(G3) = 1,
index(Γ) = 2, q-degree(Γ) = 1, and Γ’s master, G1 = (Q ∪ N1, T, P1, S1), satisfies card(N1) =
3, q-P1 = {A YQ2Q3Y}.

REFERENCES
[1] Meduna, A.: Two-Way Metalinear PC Grammar Systems and Their Descriptional

Complexity, Acta Cybernetica vol. 2003, No. 4, US, 2003, ISBN 0324-721X

[2] Vaszil, G.: On simulating Non-returning PC grammar systems with returning systems,
Theoretical Computer Science (209) 1-2, 319-329, 1998

[3] Santean, L.: Parallel Communicating Systems, EATCS Bulletin, 160-171, 1990

[4] Paun, Gh., Santean, L.: Further Remars about parallel communicating grammar systems,
International Journal of Computer Mathematics 34, 187-203, 1990

[5] Paun, Gh., Salomaa, A., Vicolov, S.: On the generative capacity of parallel
communicating grammar systems. International Journal of Computer Mathematics 45, 45-
59, 1992

[6] Csuhaj-Varju, E., Dassow, J., Kelemen, J., Paun, Gh.: Eco-Grammar Systems: A
grammatical framework for life-like interactions, Artificial Life 3, 27-38, 1996

[7] Csuhaj-Varju, E.: Cooperating grammar systems. Power and Parameters, LNCS 812,
Springer, Berlin, 67-84, 1994

[8] Csuhaj-Varju, E., Kelemen, J.: On the Power of Cooperation: a regular Representation of
R.E. Languages, Theor. Computer Sci. 81, 305-310, 1991

