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ABSTRACT 
Finite index restriction was already studied for variety of formal models and many 

results was published. This contribution discusses some new results and improves some 
known results. Contribution deals especially with grammar systems. 

1 PRELIMINARIES 

For any alphabet N, any sentence form α, #N(α) denotes the number of the occurrences 
of symbols from N in α. For every rule p, lhs(p) is the left hand side of p, rhs(p) is the right 
hand side of p, and for any set of rules P, LHS(P) = {lhs(p) | p ∈ P} is the set of all left hand 
sides of the rules in P. For any sentence form α, subs(α) is a set of all substrings of α. 

2 GRAMMARS 

A grammar is a quadruple G = (N, Σ, P, S), where N is finite set of nonterminals, Σ is 
finite terminal alphabet, S ∈ N is starting nonterminal and P ⊆ (N ∪ Σ)*N(N ∪ Σ)* × (N ∪ Σ)* 
is finite set of rules, which are usually written in the form α → β where α ∈ (N ∪ Σ)*N(N ∪ 
Σ)* and β ∈ (N ∪ Σ)*. For any x, y ∈ (N ∪ Σ)* we say that x directly derives y in G formally 
x ⇒G y, if there exists u, v, α, β, such that x = uαv, y = uβv and α → β ∈ P. Denote transitive 
and reflexive closure of ⇒G as ⇒G

*. A language defined by G is L(G) = {w | w ∈ Σ*, 
S ⇒G

* w}. 

According to form of the rules there are 4 main families of formal languages – regular, 
context-free, context and recursively enumerable languages, respectively denoted L3, L2, L1 
and L0. This classes form hierarchy: L3 ⊂ L2 ⊂ L1 ⊂ L0. For details see [3]. 

3 FINITE INDEX 

Let G = (N, Σ, P, S) be a grammar. Define an index of sentence form α ∈ (N ∪ Σ)* as 
ind(α) = #N(α). Informally, an index of sentence form is a number of occurrences of 
nonterminals in this sentence form. An index of any derivation d: α0 ⇒G α1 ⇒G α2 ⇒G … 



  

⇒G αm is the maximum of indexes of all sentence forms in this derivation, 
ind(d) = max(ind(wi)), where 0 ≤ i ≤ m. For any word x ∈ L(G), D(x) is a set of all derivations 
of x in G and ind(x) = min(ind(D(x))). Finally define an index of G as ind(G) = max(ind(x)), 
where x ∈ L(G). G is of finite index k if every x ∈ L(G) is at most of index k. For details see 
[5] or [6]. 

It is interesting to study a hierarchy of finite index languages. Denote L0FI, L1FI, L2FI, 
L3FI a families of recursively enumerable languages of finite index, context sensitive 
languages of finite index, context free languages of finite index and regular languages of finite 
index, respectively. 

It is easy to show, that every regular language is of finite index – there is only one 
nonterminal in each sentence form derived from starting nonterminal and hence regular 
languages are of index 1. In [6] it is showed that every context sensitive language of finite 
index is also context free language of finite index, formally L1FI = L2FI; the generative power 
of context sensitive grammars is reduced in respect of all context sensitive grammars. The 
result concerning all recursively enumerable languages is in contrast with the previous one. In 
[6] it is proved that L0FI = L0, however the proof doesn’t deal with proper terminals; the proof 
always establishes new improper terminals. Proper terminals of any grammar G = (N, Σ, P, S) 
are all terminals which occurs in any sentence x ∈ L(G). A modified proof, which doesn’t 
establish new improper terminals follows. 

Theorem 1 

For any alphabet Σ, |Σ|>1, any grammar G = (N, Σ, P, S), there exists grammar GFI = 
(NFI, Σ, PFI, S) of finite index such that L(GFI) = L(G). 

Proof: Let Σ be an alphabet, |Σ|>1, and G = (N, Σ, P, S) be a grammar. For some n ≥ 2 
define an injection, h, from N ∪ Σ to Σn, so that h is injective homomorphism when its 
domain is extended to (N ∪ Σ)*; h represents a coding of symbols by n-tuples of terminals. 

Without any loss of generality, assume that {B, H, E, F} ∩ Σ = ∅. Construct a new 
grammar, GFI = (NFI, Σ, PFI, S), where NFI = {S, B, H, E, F} and PFI is constructed as follows: 

 P1 = { S → B H h(S) E } 
 P2 = { H h(α) → H h(β) | α → β ∈ P } 
 P3 = { H h(a) → h(a) H | a ∈ N ∪ Σ } ∪ { h(a) H → H h(a) | a ∈ N ∪ Σ } 
 P4 = { B H → F } 
 P5 = { F h(a) → a F | a ∈ Σ } 
 P6 = { F E → ε } 

PFI = P1 ∪ P2 ∪ P3 ∪ P4 ∪ P5 ∪ P6 

The derivation is started by production from P1. Nonterminal H represents a “reading 
head”. The productions from P2 simulate a derivation step in G, since they are similar to 
productions of G – they work with coded symbols. The productions from P3 provide that H 
can move from left to right by one coded symbol and conversely. When the simulated 
derivation in G is finished, current sentence form is B h(α) H h(β) E, where αβ ∈ Σ* is 
sentence generated in G. The derivation in GFI continues B h(α) H h(β) E ⇒* B H h(α) h(β) E 
and then, by productions from P4, P5 and finally from P6:  B H h(α) h(β) E ⇒ F h(α) h(β) E 
⇒* αβ F E ⇒ αβ. Formal proof of equivalence of G and GFI is left to the reader. 

Theorem 1 doesn’t determine a generative power of finite index type-0 grammars 



  

completely. The unsolved problem here is a case of type-0 grammars over one letter alphabet. 
It is easy to find a type-0 grammar of finite index over one letter alphabet, which doesn’t 
contain improper terminals and generates non-context-free language; see Theorem 2. 
However generally this question stays unanswered in this contribution. 

Theorem 2 
There exists a grammar of type 0 over one-letter alphabet, which is of finite index and 

generates a non-context-free language. 

Proof: Consider a grammar G = (N, Σ, P, S), where N = {S, B, E, R, L}, Σ = {a} and P = 
{S → BRaE, Ra → aaR, RE → LE, aL → Laa, BL → BR, RE → ε, BL → ε, B → ε, E → ε}. 
This grammar generates a language {(a2)n | n ≥ 0}, which is not context free. Formal proof of 
this fact is left to the reader. 

4 GRAMMAR SYSTEMS 

A grammar system is a structure GS = (N, Σ, S, P1, …, Pn), where N is finite set of 
nonterminal symbols, Σ is finite terminal alphabet, S ∈ N is starting nonterminal and Pi ⊆ N × 
(N ∪ Σ)*, where 1 ≤ i ≤ n, are finite set of rules called components. Gi = (N, Σ, Pi, S) is called 
i-th grammar of GS and n is the degree of GS. 

Let u, v, w ∈ (N ∪ Σ)*, A ∈ N and r = A → u is a rule from Pi for any 1 ≤ i ≤ n. Then we 
write vAw i⇒ vuw. Reflexive and transitive closure of i⇒ is denoted i⇒*. 

There are several derivation modes used in grammar systems: 

Terminating derivation in i-th component, denoted i⇒t 

Let x, y ∈ (N ∪ Σ)*. We write x i⇒t y if and only if x i⇒* y and there is no z ∈ (N ∪ Σ)*, 
such that y i⇒ z. 

K-step derivation in i-th component, denoted i⇒=k 

Let x, y ∈ (N ∪ Σ)*. We write x i⇒=k y if and only if x i⇒k y. 

At most k-step derivation in i-th component, denoted i⇒≤k 

Let x, y ∈ (N ∪ Σ)*. We write x i⇒≤k y if and only if x i⇒j y for some j ≤ k. 

At least k-step derivation in i-th component, denoted i⇒≥k 

Let x, y ∈ (N ∪ Σ)*. We write x i⇒≥k y if and only if x i⇒j y for some j ≥ k. 

Furthermore define the derivation in GS working in mode m for some m ∈ {=k, ≤k, ≥k, 
t} as x ⇒GS

m y if and only if x i⇒m y for some i ≤ n. In common way denote the transitive and 
reflexive closure of ⇒GS

m as ⇒GS
m*. A language defined by GS working in mode m, Lm(GS) = 

{x | x ∈ Σ*, S ⇒GS
m* x}. 

In homogenous grammar system all components work in the same mode as defined 
above. Generally each component of system can work in different mode. Such systems are 
called heterogeneous grammar systems. It is clear, that every homogenous grammar system is 
a special case of heterogeneous system. For details about grammar systems see [4]. A 
grammar system of finite index is defined similarly to a grammar of finite index.  



  

Theorem 3 
Every grammar system of finite index over one letter alphabet generates regular 

language. 

Proof: Let GS = (NS, {a}, <S>, PS1, … PSn) be a grammar system of finite index f with n 
components. Denote Σ = {a}. Define a homomorphism µ: (NS ∪ Σ) → (NS ∪ {ε}), such that 
µ(A) = A for A ∈ NS, µ(a) = ε. Further define a homomorphism σ: (NS ∪ Σ) → (Σ ∪ {ε}), 
such that σ(A) = ε for A ∈ NS, σ(a) = a. Extend the domains of µ and σ to (NS ∪ Σ)*. 
Informally the homomorphisms σ and µ compute a string without nonterminals and terminals, 
respectively.  

Construct a context free grammar G = (N, {a}, <S>, P), where: 

 N = N0 ∪ N1 ∪ … ∪ Nn 
 N0 = {<A1…Am> | m ≤ f, Ai ∈ NS, 0 ≤ i ≤ m} 
 P = {<> → ε} ∪ P1 ∪ P2 ∪ … ∪ Pn 

Construction of Ni and Pi, 1 ≤ i ≤ n, depends on the mode of i-th component and is 
described below. Denote W = {w | w ∈ (NS ∪ Σ)*, #NS(w) ≤ f}. 

Terminating derivation (t-mode) 

Ni = {<x>i | <x> ∈ N0} 
Pi = {<x> → <x>i | <x> ∈ N0} 
   ∪ {<vAw >i → σ(u)<vµ(u)w>i | A → u ∈ PSi, <vAw>i, <vµ(u)w>i ∈ Ni}  
   ∪ {<x>i → <x> | <x> ∈ N0, subs(x) ∩ LHS(PSi) = ∅} 

K-step derivation (=k) 
Ni = {<x>i,l | <x> ∈ N0, 0 ≤ l ≤ k} 
Pi = {<x> → <x>i,0 | <x> ∈ N0} 
   ∪ {<vAw>i,l → σ(u)<vµ(u)w>i,l+1 | 

| A → u ∈ PSi, <vAw>i,l, <vµ(u)w>i,l+1 ∈ Ni, l < k}  
   ∪ {<x>i,k → <x> | <x> ∈ N0} 

At most k-step derivation (≤k) 
Ni = {<x>i,l | <x> ∈ N0, 0 ≤ l ≤ k} 
Pi = {<x> → <x>i,0 | <x> ∈ N0} 
   ∪ {<vAw>i,l → σ(u)<vµ(u)w>i,l+1 |  

| A → u ∈ PSi, <vAw>i,l, <vµ(u)w>i,l+1 ∈ Ni, l < k}  
   ∪ {<x>i,l → <x> | <x> ∈ N0 , l ≤ k} 

At least k-step derivation (≥k) 
Ni = {<x>i,l | <x> ∈ N0, 0 ≤ l ≤ k} 
Pi = {<x> → <x>i,0 | <x> ∈ N0} 
   ∪ {<vAw>i,l → σ(u)<vµ(u)w>i,l+1 | 

| A → u ∈ PSi, <vAw>i,l, <vµ(u)w>i,l+1 ∈ Ni, l < k}  
   ∪ {<vAw>i,k → σ(u)<vµ(u)w>i,k | A → u ∈ PSi, <vAw>i,k, <vµ(u)w>i,k ∈ Ni}  
   ∪ {<x>i,k → <x> | <x> ∈ N0} 

Constructed regular grammar generates identical language as GS does. All nonterminals 
in every sentence form are joined together in one nonterminal enclosed in brackets. Since GS 
is of finite index, the number of new nonterminals is finite. In addition the nonterminals are 



  

indexed by a number of component. Construction of set of rules assures that the derivation is 
simulated properly. Rigorous proof is left to the reader. 

However theorem 3 deals with grammar systems over one letter alphabet only. In my 
future work I want investigate more general result. I suspect that the generative power of 
grammar systems of finite index is equal to generative power of matrix grammars of finite 
index (in fact I am sure by this fact and I am working on the proof). 

Clearly there exist languages generated by grammar systems of finite index, which are 
not context-free. An example of such a system follows (without rigorous proof again): 

GS = ({S, A, B, X, Y}, {a}, S, P1, P2, P3), where  
P1 = {S → AB, X → A, Y → B} 
P2 = {A → aX, B → bYc} 
P3 = {X → ε, Y → ε} 

This grammar system working in terminating mode generates language anbncn, where 
n ≥ 1, which is well-known context sensitive language. It is easy to find a matrix grammar of 
finite index generating this language. 

As suggested by example above, the generative power of grammar systems of finite 
index is greater then the generative power of context free grammars of finite index. More 
accurate relationship between these classes of languages should be a subject of research too. I 
suspect (in this case it is only conjecture) that there is no context-free language which is not 
of finite index and which can be generated by grammar system of finite index. 
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