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ABSTRACT 
This paper focuses on the dimensional optimalization of the levitation electromagnet’s 

core, which has U shape. We optimize the core to minimal volume of the core+coils and to 
minimal leakage flux. Then we suggest the way to merge these two criterions together. The 
results of an ANSYS FEM analysis are also proposed. 

1 INTRODUCTION 

One of the main objective of my disertation work is to design and create a levitation 
electromagnet. The first step was to derive a mathematical model of electromagnet which is 
proposed in e.g. [1]. The second step is an attempt to find out the best dimensions of the core 
regarding to input variables, which are the requested attractive force and the air gap. The 
whole electromechanical system consists of the DC electromagnet, a 2 quadrant current 
convertor, a state regulation and a measurement of the current and air gap to feedback control. 
The arrangement of the electromagnets with marked dimensions you can see on the fig.1.  

There are Joule, leakage, hysteresis and eddy-current losses in the core. Thanks to one-
way flow of magnetic flux are the hysteresis losses negligible. The core is composed from 
insulated metal sheets, thus the eddy–current losses are minimal too. The minimal volume of 
the coil is required, because the volume is proportional to losses [1], hence the smaller 
volume the smaller losses in the cupper. Similarly it is with the magnetic flux, the more 
magnetic flux flow through both columns, the bigger attractive force. 

 

 

 

 

 

 

 
Fig. 1: The arrangement of the system. 



  

2 THE OPTIMALIZATION TO THE MINIMAL VOLUME 

At first we have to express the relation between the volume and core dimensions. It’s 
usefull to work with the area of window S0 and area of “iron” SFe, which good describe all 
important dimensions of electromagnet’s core.  

 2aSFe =         akakS 210 ⋅=   ( 1 ), ( 2 ) 

From the fig.1 is obvious that the volume of the core VFe and volume of the winding VCu 
is defined: 
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From the equations describing the mathematical model [1] we can isolate the relation 
for S0 and from this notation is evident that the S0 is completely defined by air gap l, which is 
constant in steady state and thereby S0 is constant too. 
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The attractive force F is in steady state, thanks to constant current I and constant air gap 
l, constant as well and after solving for SFe we’ll receive a relation defined as follows: 
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The sum of  VFe and VCu is a function of dimensional variables k1 and k2. We would like 
to find the minimum of this function, but with the condition of constant S0. The value of S0 is 
set by necessary ampere-turns IN ⋅ ,  which produce proper magnetic flux. The mentioned 
sum forms a function Ω: 
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The adjusted condition is: 00
2
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The process of finding minimum of this function Ω is based on a geometric meaning of 
first derivation. The minimum is located at the point where this derivation is equel to zero. 
Because the minimum is tied with the condition of S0, we should use some of the special 
methods to find the right minimum, for example a method of Lagrange‘s multiplikators. This 
method leads to the system of equations, whose results are stationary points. From these 
points we can choose the right minimum using a Sylvester’s theorem. The result shows tab.1. 

3 THE OPTIMALIZATION TO THE MINIMAL LEAKAGE FLUX 

In this step we want to achieve the minimal leakage flux between core’s columns. 
Considering fig.2 we can separate the total flux Φ into the useful and leakage flux, namely 
ΦUS and ΦL respectively. The useful flux must flow from the first column through the airgap 
to the “rail” and again through airgap to the second column. Only this flux implies the force. 
Every flux flowing another way is leakage flux. We assume that a magnetic resistance of the 
core is negligable, because µr,CORE = 1000. The magnetic resistance of the airgap and colis we 



  

have to consider, because µr,Cu = µr,AIR = 1. The derivation of analytic formula consist in 
integration of leakage flux in axis x and y throught the whole “window” area.  

 

 

 

 

 

 

 

 
Fig. 2: The calculation of leakage magnetic flux in X-axis. 

The overall magnetic voltage is defined INU m ⋅=  (9), then with regard to the fig.2 
the unit voltage dUm from element layer dy is:   
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The element increment of magnetic leakage flux in the direction of axis x is: 
mmLx dUd ⋅=Φ λ  (10), where the magnetic conductivity λm of the volume in the 

“window” above the layer dy is: 
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And after substitution (9), (11) to (10) and after integrating from 0 to ak ⋅1 we get: 
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It can be shown by analogy that if we neglect the dimension of the airgap l owning to 
the domension ak ⋅1 , the leakage flux in the direction of axis y is: 
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And then the total leakage flux is the sum of the fluxes in both axises. 
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The minimal ΦL comes on when k1 = k2 = kF,MIN. So if the shape of the “window” is 
square, there will be minimal leakage flux. Again the results for are in the table 1. 



  

4 MERGING BOTH MENTIONED OPTIMALIZATION TOGETHER 

Both of the previous optimalizations are important for us. So we would like to have 
electromagnet optimized to both criterions together, thus we should tot them up. But if we 
want to do that, we have to standardize the functions ΩΣ and ΦL. The function ΩΣ we will 
divide by concrete value of ΩΣMIN, which we receive by establishing k1V,MIN and k2V,MIN into 
ΩΣ. We get the function called RV(k1;k2) whose minimal value is 1 for k1 = k1V,MIN and k2 = 
k2V,MIN. We have to do the same by analogy with ΦL, the result function is RF(k1;k2). 

Now we can tot up these functions. The coefficients CV, CF in equ.15 are real numbers 
between <0;1> that say us how is the involved optimalization important for us. The bigger 
number, the more important for us. If the equation CV + CF = 1 will be kept, the theoretical 
minimal value of the function RΣ(k1;k2) will be 1, but this value can be achieved only if one of 
the coefficient is equal to zero. The bigger coefficient CV over CF , the closer to the 
optimalization of minimal volume we are. 
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As well as in chapter 3 we have to use the condition defined by equ. (8) and the same 
technique (the method of Lagrange‘s multiplikators) to find the minimum of the RΣ(k1;k2).  

5 ANSYS FINITE ELEMENT ANALYSIS 

Thanks to this analysis we are able to check correctness of our analytic calculation. We 
made analysis for various shapes of the core and observed a path of magnetic flux. The 
magnetic field was performed by 3D static nodal-based analysis. At first a SOLID5 element 
was used for the coils. The current excitation load was assigned as a current density of 
constant value. All surface-effects was neglected. The magnetic field was computed from 
vector magnetic potential using a SOLID97 element. We assume a linear material property of 
both “iron” parts, so the constant permeability was entered. A simulation part of surrounding 
air has a block shape and on his areas was placed the condition of zero vector of magnetic 
potential. 

 

 

 

 

 

 

 

 

 
Fig. 3: Some of the resultant pictures.  



  

6 CONCLUSION 

In the following table are compared the results of all previous criterions. In spite of the 
fact that the dimension a is fully determined by requested force F (see equ. (1),(2)), we set 
this dimension a = 5 cm for our computation. Therefore F is determined by the dimension a. 
For the “joined” criterion we assume that both of the optimalizations are equally important for 
us, so CV = CF = 0,5. 

 

 VOLUME OPT. FLUX OPT. VOL. + FLUX OPT. 

k1 [-] 3,00 1,66 1,78 

k2 [-] 1,92 1,66 1,55 

φL/φLMIN [%] 178 100 101 

VΣ/VΣMIN [%] 100 109 107 

RΣ [-] 1,932 1,044 1,039 
Tab. 1: The table of results. 

The volume opt. alone is useless, because then the core has great leakage flux (178% of 
the minimal possible leakage flux). The flux opt. alone is much better, it has of course 
minimal leakage flux and only 109 % of minimal volume. The final shape is very close to that 
one determined by flux optimalization, but the leakage flux is about 1 % bigger and the 
volume is about 2 % smaller. 

The core’s shape owning to first “volume” criterion is narrow and high, owning to 
minimal flux criterion is it exact square and owning to the joined one the core has 
compromise shape. This shape of the core is the best regarding our requiments.  

Despite the ANSYS analysis was not perfect due to accepted simplifications, it confirms 
our previous results. The core with the dimensions received by joined criterion has the 
minimal leakage flux. 
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