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ABSTRACT 
This article is focused on nonlinear signal processing using Levenberg – Marquardt 

(LM) algorithm [1] [2]. We introduce possibility of using different signal models to fit input 
data, which increases usability and performance of algorithm in different fields of study and 
research. In principle each nonlinear algorithm uses a definition of signal model and 
derivation of this function. This definition is advisable to declare in a separate function, which 
is called in iterations to compute cost function between model and data and evaluate new set 
of parameters. Basically this theory is not bounded to specific nonlinear algorithm, but it is 
applicable to arbitrary nonlinear algorithm, such as Gauss – Newton or pure Newton method. 
At the end of subscription some observations have been made on exponential signal fitting 
with linear function, fitting on noisy signal and the basis for nonlinear estimation of 
parameters from biomedical signals. 

1 INTRODUCTION 

LM algorithm is a widespread nonlinear tool for parameter estimation of signal data. It 
is often used for solving problems raised from linear least squares problem tasks and mainly 
as a basis for more sophisticated algorithms for biomedical signal processing such as 
VARPRO or AMARES as well [3]. LM is a powerful tool for signal processing not bounded 
to a specific research discipline. In biomedicine it handles with signals of Nuclear magnetic 
resonance (NMR), we can find it in neural network domain processing or everywhere the 
optimization process is needed. In biomedicine is often used Lorentz (Gauss, Voight) model 
to fit signal or simply exponential model for special cases [4]. Due to this broad use, naturally 
different description of handled signals is needed. It makes sense to work on adaptability of 
LM to different signal models.  

 



  

2 BASIC THEORY 

Observed signals in biomedicine can be well modeled using Lorentz function [5], which 
describes exponentially damped complex sinusoids: 
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where A stands to amplitudes, α represents damping factors, ω represents an angular 
frequencies and ϕ means initial phases. In signal we can find k harmonical components. To 
simplify annotation it is convenient to pick components related to same harmonical 
component to one vector x. So we search a set of xk vectors to describe our signal. 

 

Philosophy of Levenberg – Marquardt (LM) algorithm is based on solving lest squares 
problem, which is defined as: 

 

 )()(
2
1)(

2
1)),((

2
1),(

2

1

2 xfxfxftxMytxF T
m

i
ii ==−= ∑

=

, ( 2 ) 

where F(x) is cost function, and expression to be squared is called residuum. Residuum 
represents the difference between signal data y and model M, which is dependent on set of 
estimated parameters x, and time vector t of course. Dividing by 2 is only for convenience and 
has no effect on solution. In absence of noise and correct fitting model it is possible to reach 
negligible or zero residuum ( as well as cost function ), which is the goal of algorithm 
procedure. If we mark residuum as f function, for close neighborhood we can write using 
Taylor expansion for linear approximation ( accepting only first two elements ): 
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where vector h determines direction to new set of parameters in next iteration. J matrix 
represents Jacobean, which contains the first partial derivatives of the residual components: 
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All nonlinear algorithms trying to secure descent direction h on cost function F to 
solution x*, which minimizes it. Change to new set of parameters is reflected on cost function 
using eq.(1), (2) and Taylor expansion for linear approximation again:  
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It is not intended to explain detailed theory about LM algorithm, which is also not 
necessary, lot of contributions has been published [1] [2] [5]. Set of equations is used to 



  

demonstrate requirements for a model. From eq. (1) and (3) is obvious that the model is 
included in residuum and Jacobean both, so it is necessary to adjust definition of a model 
function there.  

3 USING OF DIFFERENT SIGNAL MODULES 

LM uses definition of model in separate function, which can looks like eq.(6):  
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it is obvious, that estimated parameters create columns. Of course in each iteration are 
parameters replaced and new fitting curve is obtained. Matrix form for derivation of fitting 
function can look like this formula: 
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Derivation of fitting curve is necessary to evaluate a Jacobian., which is mainly used for 
searching descend direction to satisfy convergence criteria. 

3.1 ADAPTATION LM TO LINEAR FITTING CURVE 
Linear model of fitting curve is very simple. This group of signals related to nonlinear 

fitting tasks produces the only one linear curve, because the sum of linear estimated curves 
always produces one curve, no matter of initial number of fitting curves: 
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Interpretation of the final fitting curve is to approximate data in least square sense. This 
result secures the smallest quadratic difference between linear model and data as is shown on 
the left of obr.1.  

3.2 ADAPTATION LM TO EXPONENTIAL FITTING CURVE 
This group of tasks is very common, often used and one of the first solved nonlinear 

problems. It rises from linear least squares tasks, which reflect solving initial amplitude as 
linear parameter and damping (omega in argument ) factor as nonlinear parameter building 
and determining cost function F. Estimating parameters of exponentials in signal is helpful in 
biomedicine to determine chemical components in sample. Estimation of exponential curve 
from noisy signal is showing on obr.1 on the right. 

 



  

3.3 ADAPTATION LM TO BIOMEDICAL MODELS 
Means to fit observed data with Lorenz (Gauss, Voight) model from eq (1).This is 

challenging task still in progress [6], lot of modifications and improved sophisticated 
algorithms have raised [7]. To this account simulations have been observed and are outlined 
on obr.2. On the left are plotted original data consisted of four decayed sinusoids. For fitting 
procedure Lorentz function has been chosen and applied successfully, as is obvious from 
obr.2. on right, where residuum is plotted and is negligible in –12 order. 

 

 
Fig. 1: Simple fitting tasks, fitting ideal single exponential curve with linear curve 

 on left, fitting with adequate model of noisy data on the right  

 

 
Fig. 2: Biomedical data containing four decayed sinusoids and fitted  

with Lorentz model on the left, residuum on the right 

Fitting biomedical signals leads to quantitation, which means converting estimated 
parameters to biochemical quantities. This processing leads to efficient tumor detections, 
brain tissues and heart abnormalities.  



  

4 CONCLUSION 

This article was aimed to increase the usability of nonlinear algorithms, namely 
Levenberg – Marquardt [8]. It has been outlined that using proper definition of signal model 
allow use in different fields of study, starting with optimization techniques and continuing to 
biomedical applications, where nonlinear fitting is the most used. For speech processing 
certain constrains exist, there is difficult use of algorithm in real time applications. To secure 
the reusability of algorithm in advance separate implementation of fitting function and 
Jacobian is recommended. 
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