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ABSTRACT 
The paper deals with the derivation of a higher-order time-domain scheme for Time-

Domain Finite Element Method (TD-FEM). An explicit and an implicit time-domain update 
scheme based on the third order approximation in time are presented. 

1 INTRODUCTION 

The TD-FEM is based on solving the wave equation [1] 
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where E
r

denotes an unknown electric field intensity vector, µr is relative permeability, µ0 
denotes permeability of vacuum, ε and σ are permittivity and conductivity of media, respec-
tively. 

 We can use nodal finite elements [1]. Then, the vector equation (1) can be divided into 
three scalar equations for each component of E

r
. E.g., the z component is given by 
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The following semi-discrete equation can be obtained by multiplying (2) by the space weigh-
ting function Ni, by integrating the product over the finite element, and by applying Green’s 
identity [1] 
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Now, we have to approximate an unknown electric field using space basis functions Nj 
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Here uj denotes unknown nodal values of electric field and N is the number of unknown 
coefficients. Substituting (4) into (3), we can obtain the matrix differential equation [1] 
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where u=[u1, u2,…., uN]T denotes the vector of unknown coefficients and T, R, S are square 
matrices, which terms are given as follows 
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In (6), ε0 and εr are permittivity of vacuum and relative permittivity. The vector f denotes an 
excitation vector given by 
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2 HIGH-ORDER APPROXIMATION IN TIME DOMAIN 

Lagrange polynomial is the most useful approximation for time-domain scheme. The 
usual approximation in the time domain is based on the second-order Lagrange polynomial 
[2]. In this paper, the third-order approximation is developed. In the next, the superscript 
denotes a time-step index. Due to the symmetry, the terms u-2, u-1, u1 and u2 denote values 
related to equidistantly divided time points 3δt/2, -δt/2, δt/2, 3δt/2, respectively. We use the 
third-order general form of Lagrange polynomial given by 
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where a, b, c and d are constants. 

Now, we have to compare the derivatives of this polynomial (in given time points 3δt/2, 
-δt/2, δt/2, 3δt/2) with general finite differences [1] in order to obtain constants a, b, c and d. 
In this case, we get a = -1, b = 3, c = -3, d = 1. The polynomial (8) melts into 
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The first derivative of the polynomial (9) is given by 
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The second derivative of the polynomial (9) can be expressed as 
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Now, we can substitute (9), (10), (11) into the semi-discrete equation (5). In this case, we 
obtain 
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In order to obtain the time-domain scheme, the equation (12) is multiplied by the function 
W(t) and integrated in time. This approach is called the weighting of residual in the time 
domain [2]. Dividing the result by δt, we obtain 
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where coefficients Θ1, Θ2, Θ3 and the vector g are given as follows 
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Now, we have to set coefficients Θ1, Θ2, Θ3 in order to ensure the stability of the scheme (13). 
According to the general stability conditions [2], we obtain the following inequalities 
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We can experimentally show that even in this case, the stability is not ensured for any struc-
ture: the stability is the best when choosing Θ1=0 and Θ3=0. In this case, the equation (13) 
melts into 
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Now, we can extract the general three-step algorithm for the computation of the time 
response. We have to set Θ2≥3/4 for the unconditional stability. The minimum dispersion 
error is reached for Θ2=3/4. After substituting Θ2=3/4, transposing equation (16) and re-
indexing time steps, we get the implicit algorithm 
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In order to obtain the explicit algorithm, we have to choose Θ2 so that the multiplicand of S in 
is zero for the time number u2. This condition is satisfied for Θ2=1/4. After substituting 
Θ2=1/4, transposing equation (16) and re-indexing time steps, we get the explicit algorithm 
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3 EXAMPLE 

The cuboidal resonator with dimensions 150 mm, 180 mm and 130 mm was analyzed. 
The discretization mesh was set to N = 20 per side of the structure. The problem was solved in 
the frequency range from 0 to 4 GHz, with 0.5 MHz resolution. The corresponding spectra of 
the method are not shown here, as they cannot be compared easily. Instead, a list of wave-
mode frequencies is generated. 

The two-step and three-step algorithms were used for analyzing this resonator. The 
dispersion errors were found to be the same. On the other hand, the explicit three-step 
algorithm exhibits better stability for a longer time step. 
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Fig. 1: Eigenfrequency error for TM modes, N=20 

4 CONCLUSION 

The explicit scheme based on the three-step algorithm (18) exhibits better stability than 
the explicit scheme based on the two-step algorithm presented in [2], because the explicit 
two-step algorithm is set at Θ2=0 and accordingly Dirac pulse is used as a weighting function 
in the time domain. The explicit three-step algorithm is set at Θ2=1/4 and accordingly 
constant function is used as a weighting function in the time domain. 
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