HIGHER-ORDER ALGORITHM IN TIME-DOMAIN FINITE ELEMENT METHOD

Ing. Milan MOTL, Doctoral Degree Programme (3)
Dept. of Radio Electronics, FEEC, BUT
E-mail: motl@feec.vutbr.cz
Supervised by: Prof. Zbyněk Raida

Abstract

The paper deals with the derivation of a higher-order time-domain scheme for TimeDomain Finite Element Method (TD-FEM). An explicit and an implicit time-domain update scheme based on the third order approximation in time are presented.

1 INTRODUCTION

The TD-FEM is based on solving the wave equation [1]

$$
\begin{equation*}
\vec{\nabla} \times\left(\frac{1}{\mu_{r}} \vec{\nabla} \times \vec{E}\right)+\mu_{0} \varepsilon \frac{\partial^{2} \vec{E}}{\partial t^{2}}+\mu_{0} \sigma \frac{\partial \vec{E}}{\partial t}=-\mu_{0} \frac{\partial \vec{J}}{\partial t}, \tag{1}
\end{equation*}
$$

where \vec{E} denotes an unknown electric field intensity vector, μ_{r} is relative permeability, μ_{0} denotes permeability of vacuum, ε and σ are permittivity and conductivity of media, respectively.

We can use nodal finite elements [1]. Then, the vector equation (1) can be divided into three scalar equations for each component of \vec{E}. E.g., the z component is given by

$$
\begin{equation*}
-\frac{1}{\mu_{r}} \vec{\nabla}^{2} E_{z}+\mu_{0} \varepsilon \frac{\partial^{2} E_{z}}{\partial t^{2}}+\mu_{0} \sigma \frac{\partial E_{z}}{\partial t}=-\mu_{0} \frac{\partial J_{z}}{\partial t} . \tag{2}
\end{equation*}
$$

The following semi-discrete equation can be obtained by multiplying (2) by the space weighting function N_{i}, by integrating the product over the finite element, and by applying Green's identity [1]

$$
\begin{equation*}
\iiint_{V}\left\{\frac{1}{\mu_{r}}\left(\vec{\nabla} N_{i}\right) \cdot\left(\vec{\nabla} E_{z}\right)+\mu_{0} \varepsilon N_{i} \frac{\partial^{2} E_{z}}{\partial t^{2}}+\mu_{0} \sigma N_{i} \frac{\partial E_{z}}{\partial t}\right\} d V=-\mu_{0} \iiint_{V} N_{i} \frac{\partial J_{z}}{\partial t} d V . \tag{3}
\end{equation*}
$$

Now, we have to approximate an unknown electric field using space basis functions N_{j}

$$
\begin{equation*}
E=\sum_{j=1}^{N} u_{j} N_{j} \tag{4}
\end{equation*}
$$

Here u_{j} denotes unknown nodal values of electric field and N is the number of unknown coefficients. Substituting (4) into (3), we can obtain the matrix differential equation [1]

$$
\begin{equation*}
\mathbf{T} \frac{d^{2} \mathbf{u}}{d t^{2}}+\mathbf{R} \frac{d \mathbf{u}}{d t}+\mathbf{S u}=-\mathbf{f} \tag{5}
\end{equation*}
$$

where $\mathbf{u}=\left[u_{1}, u_{2}, \ldots, u_{N}\right]^{\mathrm{T}}$ denotes the vector of unknown coefficients and $\mathbf{T}, \mathbf{R}, \mathbf{S}$ are square matrices, which terms are given as follows

$$
\begin{gather*}
T_{i j}=\mu_{0} \varepsilon_{0} \iiint_{V} \varepsilon_{r} N_{i} N_{j} d V \\
R_{i j}=\mu_{0} \iiint_{V} \sigma N_{i} N_{j} d V \tag{6}\\
S_{i j}=\iiint_{V} \frac{1}{\mu_{r}}\left(\vec{\nabla} N_{i}\right) \cdot\left(\vec{\nabla} N_{j}\right) d V,
\end{gather*}
$$

In (6), ε_{0} and ε_{r} are permittivity of vacuum and relative permittivity. The vector \mathbf{f} denotes an excitation vector given by

$$
\begin{equation*}
f_{i}=\mu_{0} \iiint_{V} N_{i} \frac{\partial J_{i}}{\partial t} d V \tag{7}
\end{equation*}
$$

2 HIGH-ORDER APPROXIMATION IN TIME DOMAIN

Lagrange polynomial is the most useful approximation for time-domain scheme. The usual approximation in the time domain is based on the second-order Lagrange polynomial [2]. In this paper, the third-order approximation is developed. In the next, the superscript denotes a time-step index. Due to the symmetry, the terms u^{-2}, u^{-1}, u^{1} and u^{2} denote values related to equidistantly divided time points $3 \delta t / 2,-\delta t / 2, \delta t / 2,3 \delta t / 2$, respectively. We use the third-order general form of Lagrange polynomial given by

$$
\begin{align*}
u(t)= & \frac{1}{48(\delta t)^{3}}\left[a u^{-2}(2 t+\delta t)(2 t-\delta t)(2 t-3 \delta t)+b u^{-1}(2 t+3 \delta t)(2 t-\delta t)(2 t-3 \delta t)+\right. \\
& \left.+c u^{1}(2 t+3 \delta t)(2 t+\delta t)(2 t-3 \delta t)+d u^{2}(2 t+3 \delta t)(2 t+\delta t)(2 t-\delta t)\right] \tag{8}
\end{align*}
$$

where a, b, c and d are constants.
Now, we have to compare the derivatives of this polynomial (in given time points $3 \delta t / 2$, $-\delta t / 2, \delta t / 2,3 \delta t / 2$) with general finite differences [1] in order to obtain constants a, b, c and d. In this case, we get $a=-1, b=3, c=-3, d=1$. The polynomial (8) melts into

$$
\begin{align*}
u(t)= & \frac{1}{48(\delta t)^{3}}\left[-u^{-2}(2 t+\delta t)(2 t-\delta t)(2 t-3 \delta t)+3 u^{-1}(2 t+3 \delta t)(2 t-\delta t)(2 t-3 \delta t)+\right. \\
& \left.-3 u^{1}(2 t+3 \delta t)(2 t+\delta t)(2 t-3 \delta t)+u^{2}(2 t+3 \delta t)(2 t+\delta t)(2 t-\delta t)\right] . \tag{9}
\end{align*}
$$

The first derivative of the polynomial (9) is given by

$$
\frac{d u(t)}{d t}=\frac{1}{48(d t)^{3}}\left[-u^{-2}\left(24 t^{2}-24 t \delta t-2 \delta t^{2}\right)+3 u^{-1}\left(24 t^{2}-8 t \delta t-18 \delta t^{2}\right)-\right.
$$

$$
\begin{equation*}
\left.-3 u^{1}\left(24 t^{2}+8 t \delta t-18 \delta t^{2}\right)+u^{2}\left(24 t^{2}+24 t \delta t-2 \delta t^{2}\right)\right] \tag{10}
\end{equation*}
$$

The second derivative of the polynomial (9) can be expressed as

$$
\begin{equation*}
\frac{d^{2} u(t)}{d t^{2}}=\frac{1}{48(d t)^{3}}\left[-u^{-2}(48 t-24 \delta t)+3 u^{-1}(48 t-8 \delta t)-3 u^{1}(48 t+8 \delta t)+u^{2}(48 t+24 \delta t)\right] \tag{11}
\end{equation*}
$$

Now, we can substitute (9), (10), (11) into the semi-discrete equation (5). In this case, we obtain

$$
\begin{gather*}
24 \cdot \mathbf{T} \cdot\left[-u^{-2}(2 t-\delta t)+u^{-1}(6 t-\delta t)-u^{1}(6 t+\delta t)+u^{2}(2 t+\delta t)\right]+ \\
+2 \cdot \mathbf{B} \cdot\left[-u^{-2}\left(12 t^{2}-12 t \delta t-\delta t^{2}\right)+3 u^{-1}\left(12 t^{2}-4 t \delta t-9 \delta t^{2}\right)-\right. \\
\left.-3 u^{1}\left(12 t^{2}+4 t \delta t-9 \delta t^{2}\right)+u^{2}\left(12 t^{2}+12 t \delta t-\delta t^{2}\right)\right] \\
+\mathbf{S}\left[u^{-2}\left(-8 t^{3}+12 t^{2} \delta t+2 t \delta t^{2}-3 \delta t^{3}\right)+3 u^{-1}\left(8 t^{3}-4 t^{2} \delta t-18 t \delta t^{2}+9 \delta t^{3}\right)-\right. \\
\left.-3 u^{1}\left(8 t^{3}+4 t^{2} \delta t-18 t \delta t^{2}-9 \delta t^{3}\right)+u^{2}\left(8 t^{3}+12 t^{2} \delta t-2 t \delta t^{2}-3 \delta t^{3}\right)\right]+48 \delta t^{3} \mathbf{f} . \tag{12}
\end{gather*}
$$

In order to obtain the time-domain scheme, the equation (12) is multiplied by the function $W(t)$ and integrated in time. This approach is called the weighting of residual in the time domain [2]. Dividing the result by δt, we obtain

$$
\begin{gather*}
u^{-2}\left[24 \mathbf{T}\left(-2 \Theta_{1}+1\right)+2 \mathbf{B} \delta t\left(-12 \Theta_{2}+12 \Theta_{1}+1\right)+\mathbf{S}(\delta t)^{2}\left(-8 \Theta_{3}+12 \Theta_{2}+2 \Theta_{1}-3\right)\right]+ \\
+u^{-1}\left[24 \mathbf{T}\left(6 \Theta_{1}-1\right)+2 \mathbf{B} \delta t\left(36 \Theta_{2}-12 \Theta_{1}-27\right)+\mathbf{S}(\delta t)^{2}\left(24 \Theta_{3}-12 \Theta_{2}-54 \Theta_{1}+27\right)\right]+ \\
+u^{1}\left[24 \mathbf{T}\left(-6 \Theta_{1}-1\right)+2 \mathbf{B} \delta t\left(-36 \Theta_{2}-12 \Theta_{1}+27\right)+\mathbf{S}(\delta t)^{2}\left(-24 \Theta_{3}-12 \Theta_{2}+54 \Theta_{1}+27\right)\right]+ \\
+u^{2}\left[24 \mathbf{T}\left(2 \Theta_{1}+1\right)+2 \mathbf{B} \delta t\left(12 \Theta_{2}+12 \Theta_{1}-1\right)+\mathbf{S}(\delta t)^{2}\left(8 \Theta_{3}+12 \Theta_{2}-2 \Theta_{1}-3\right)\right]+ \\
+48(\delta t)^{2} \mathbf{g}, \tag{13}
\end{gather*}
$$

where coefficients $\Theta_{1}, \Theta_{2}, \Theta_{3}$ and the vector \mathbf{g} are given as follows

$$
\begin{equation*}
\Theta_{1}=\frac{\int_{-\frac{3 \delta t}{2}}^{\frac{3 \delta \delta}{2}} W(t) t d t}{\delta t \int_{-\frac{3 \delta t}{2}}^{\frac{3 \delta i t}{2}} W(t) d t}, \quad \Theta_{2}=\frac{\int_{-\frac{3 \delta t}{2}}^{\frac{3 \delta \delta}{2}} W(t) t^{2} d t}{(\delta t)^{2} \int_{-\frac{3 \delta t}{2}}^{\frac{3}{2}} W(t) d t}, \quad \Theta_{3}=\frac{\int_{-\frac{3 \delta t}{2}}^{\frac{3 \delta t}{2}} W(t) t^{3} d t}{(\delta t)^{3} \int_{-\frac{3 \delta t}{2}}^{\frac{3 \delta t}{2}} W(t) d t}, \quad \mathbf{g}=\frac{\int_{-\frac{3 \delta t}{2}}^{\frac{3 \delta t}{2}} W(t) \mathbf{f} d t}{\int_{-\frac{3 \Delta t}{2}}^{2} W(t) d t} . \tag{14}
\end{equation*}
$$

Now, we have to set coefficients $\Theta_{1}, \Theta_{2}, \Theta_{3}$ in order to ensure the stability of the scheme (13). According to the general stability conditions [2], we obtain the following inequalities

$$
\Theta_{3} \geq \frac{7}{4} \Theta_{1}
$$

$$
\begin{equation*}
\Theta_{3} \leq \frac{1}{2}\left(6 \Theta_{2}-1\right) \Theta_{1} \tag{15}
\end{equation*}
$$

We can experimentally show that even in this case, the stability is not ensured for any structure: the stability is the best when choosing $\Theta_{1}=0$ and $\Theta_{3}=0$. In this case, the equation (13) melts into

$$
\begin{align*}
& u^{-2}\left[\frac{1}{2} \mathbf{T}+\frac{1}{24}\left(-12 \Theta_{2}+1\right) \delta t \mathbf{B}+\frac{1}{16}\left(4 \Theta_{2}-1\right)(\delta t)^{2} \mathbf{S}\right]+ \\
+ & u^{-1}\left[-\frac{1}{2} \mathbf{T}+\frac{3}{8}\left(4 \Theta_{2}-3\right) \delta t \mathbf{B}+\frac{1}{16}\left(-4 \Theta_{2}+9\right)(\delta t)^{2} \mathbf{S}\right]+ \\
+ & u^{1}\left[-\frac{1}{2} \mathbf{T}+\frac{3}{8}\left(-4 \Theta_{2}+3\right) \delta t \mathbf{B}+\frac{1}{16}\left(-4 \Theta_{2}+9\right)(\delta t)^{2} \mathbf{S}\right]+ \\
+ & u^{2}\left[\frac{1}{2} \mathbf{T}+\frac{1}{24}\left(12 \Theta_{2}-1\right) \delta t \mathbf{B}+\frac{1}{16}\left(4 \Theta_{2}-1\right)(\delta t)^{2} \mathbf{S}\right]+(\delta t)^{2} \mathbf{g} \tag{16}
\end{align*}
$$

Now, we can extract the general three-step algorithm for the computation of the time response. We have to set $\Theta_{2} \geq 3 / 4$ for the unconditional stability. The minimum dispersion error is reached for $\Theta_{2}=3 / 4$. After substituting $\Theta_{2}=3 / 4$, transposing equation (16) and reindexing time steps, we get the implicit algorithm

$$
\begin{gather*}
{\left[\frac{1}{2} \mathbf{T}-\frac{1}{3} \delta t \mathbf{B}+\frac{1}{8}(\delta t)^{2} \mathbf{S}\right] \mathbf{u}^{n-2}+\left[-\frac{1}{2} \mathbf{T}+\frac{3}{8}(\delta t)^{2} \mathbf{S}\right] \mathbf{u}^{n-1}+\left[-\frac{1}{2} \mathbf{T}+\frac{3}{8}(\delta t)^{2} \mathbf{S}\right] \mathbf{u}^{n}+} \\
+\left[\frac{1}{2} \mathbf{T}+\frac{1}{3} \delta t \mathbf{B}+\frac{1}{8}(\delta t)^{2} \mathbf{S}\right] \mathbf{u}^{n+1}+(\delta t)^{2} \mathbf{g} . \tag{17}
\end{gather*}
$$

In order to obtain the explicit algorithm, we have to choose Θ_{2} so that the multiplicand of \mathbf{S} in is zero for the time number u^{2}. This condition is satisfied for $\Theta_{2}=1 / 4$. After substituting $\Theta_{2}=1 / 4$, transposing equation (16) and re-indexing time steps, we get the explicit algorithm

$$
\begin{gather*}
{\left[\frac{1}{2} \mathbf{T}-\frac{1}{12} \delta t \mathbf{B}\right] \mathbf{u}^{n-2}+\left[-\frac{1}{2} \mathbf{T}-\frac{3}{4} \delta t \mathbf{B}+\frac{1}{2}(\delta t)^{2} \mathbf{S}\right] \mathbf{u}^{n-1}+\left[-\frac{1}{2} \mathbf{T}+\frac{3}{4} \delta t \mathbf{B}+\frac{1}{2}(\delta t)^{2} \mathbf{S}\right] \mathbf{u}^{n}+} \\
+\left[\frac{1}{2} \mathbf{T}+\frac{1}{12} \delta t \mathbf{B}\right] \mathbf{u}^{n+1}+(\delta t)^{2} \mathbf{g} \tag{18}
\end{gather*}
$$

3 EXAMPLE

The cuboidal resonator with dimensions $150 \mathrm{~mm}, 180 \mathrm{~mm}$ and 130 mm was analyzed. The discretization mesh was set to $N=20$ per side of the structure. The problem was solved in the frequency range from 0 to 4 GHz , with 0.5 MHz resolution. The corresponding spectra of the method are not shown here, as they cannot be compared easily. Instead, a list of wavemode frequencies is generated.

The two-step and three-step algorithms were used for analyzing this resonator. The dispersion errors were found to be the same. On the other hand, the explicit three-step algorithm exhibits better stability for a longer time step.

Fig. 1: Eigenfrequency error for $T M$ modes, $N=20$

4 CONCLUSION

The explicit scheme based on the three-step algorithm (18) exhibits better stability than the explicit scheme based on the two-step algorithm presented in [2], because the explicit two-step algorithm is set at $\Theta_{2}=0$ and accordingly Dirac pulse is used as a weighting function in the time domain. The explicit three-step algorithm is set at $\Theta_{2}=1 / 4$ and accordingly constant function is used as a weighting function in the time domain.

ACKNOWLEDGEMENTS

Research described in the paper was financially supported by the research programs MSM 262200011 and MSM 262200022, by the grants of the Czech Grant Agency no. 102/03/H086, 102/04/0553 and 102/04/1079. Further financing was obtained via the grant of the Grant Agency of Czech Ministry of Education no. FRVŠ 1627/2004.

REFERENCES

[1] Raida, Z., Tkadlec, R., Franek, O., Motl, M., Láčík, J., Lukeš, Z., Škvor, Z. Analýza mikrovlnných struktur v časové oblasti. ISBN 80-214-2541-5.
[2] Lee, J.-F., Lee, R., Cangellaris, A.: Time-Domain Finite Element Methods. IEEE Transactions on Antennas and Propagation. 1997, vol. 45, no. 3, p. 430-441. ISSN 0018926X.

