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ABSTRACT 
The time-domain electric field integral equations (EFIE) are solved by the method of 

moments. The RWG functions are used as basis functions. The explicit and implicit forms are 
derived from TD-EFIE. Their properties are demonstrated on the example of a square plate, 
which is excited as a scatterer. 

1 INTRODUCTION 
The problem of obtaining transient response of an arbitrarily shaped conducting body 

excited either as an antenna or as a scatterer is the interest in electromagnetic community. 
Basically, there are two approaches to obtain the transient response of an arbitrarily shaped 
conducting body: 1) by obtaining the frequency response of the structure excited by time-
harmonic sources and using the inverse Fourier transform techniques to calculate the required 
transient data [1] and 2) by formulating the problem directly in the time domain [2].  

In this work, we consider the second approach. Two solution forms are presented, the 
explicit one [2] and the implicit [3] one. Their properties are demonstrated on the example of 
a conducting plate. 

2 TIME-DOMAIN ELECTRIC FIELD INTEGRAL EQUATION FORMULATION 

Let S denote the surface of a closed or open perfect electric conducting (PEC) body 
illuminated by a transient electromagnetic pulse. By enforcing the tangential electric field 
boundary condition on the PEC surface, the following integro–differential equation may be 
derived [2] 
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The vector potential A, the scalar potential φ or the time derivative of the scalar 
potential ψ contain the unknown current density J(r, t), which is induced by the incident 
electric field Ei, r is an arbitrarily located observation point. The equation (1a) is used for the 
derivation of the implicit form [3], the time derivative of the vector potential is approximated 
by a backward finite difference. The equation (1b) is used for the derivation of the explicit 
form [2], the time derivative of the vector potential is approximated by a central finite 
difference. Thereafter, the equations (1a, 1b) are solved by the method of moments (MoM) 
[3]. The body is modeled with triangular patches. The unknown current density J(r, t) is 
approximated as 
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In (2), (3) In(t) is the unknown coefficient representing the value of the component of 
the surface current normal to the nth edge, fn is the basis function, ln is the length of the edge, 

±
nA is the area of the triangle ±

nT  (Fig. 1), ±
nρ is the vector from resp. to the free vertex of ±

nT  
and N is the number of nonboundary edges. A boundary edge is defined as an edge, which is 
associated with only one triangular patch. These basis functions are called RWG functions 
and their properties are described in [1].  

 
Fig. 1: Triangle pair and their interior edge 

2.1 THE IMPLICIT FORM 
After the testing procedure, it yields from (1a) 

 [ ] ),,(
22

),(),(),(),(
22

1
im

i
mi

c
mi

c
mm

imim
c
m

c
m

m tlttl
t

ttl rErrrArA c
m

c
m ⋅








+=−−

∆
−

⋅







+

−+
−+−

−+ ρρφφρρ  

  N, , m …= 321 , (4) 

In (4) +c
mρ is the vector from the free vertex to the centroid of +

mT and −c
mρ is the vector 

from the centroid to the free vertex of −
mT , ±c

mr  resp. mr  represent the position vectors to the 
centroids of the triangle ±

mT  resp. to the center of mth edge. 



  

The disadvantage of (4) is using the side finite difference and the numerical integration 
of the temporal current, which is necessary for computing the scalar potential φ [3]. 

2.2 THE EXPLICIT FORM 
After the testing procedure, it yields from (1b) 
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The meaning of symbols stays the same. We require [2] cRt /min≤∆ , where minR is the 
minimum distance between the edge centers and c  is the velocity of propagation of the 
electromagnetic wave. 

Using the central finite difference is the advantage of (5). This form is more accurate 
than the implicit form but the problem is the stability of solution. 

3 NUMERICAL EXAMPLE 

In this section, the numerical results are presented. The current is computed in the 
center of the square plate, which is excited as a scatterer by a Gaussian impulse plane wave of 
the form given by [3] 
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where 0k is the unit vector in the direction of propagation of the incident wave, T is the 
pulsewidth of the Gaussian impulse, 000 =⋅kE  and 0t is a time delay that represents the time 
at which the pulse peaks at the origin. The Gaussian impulse is with xaE π1200 = V/m, 

zak −=0 , 2=T lm (ligthmeter), and 60 =ct lm. Note that 1lm is the unit of time taken by the 
electromagnetic wave to propagate a distance of 0.1 m in free space. Comparisons are made 
with frequency domain data that were inverse Fourier transformed. 



  

 
Fig. 2: The analyzed square plate 

The square plate depicted in Fig. 2, 0.5 x 0.5 m, is located in the xy  plane and centered 
about the origin. The plate is divided into six and five identical elements along x  and y  
directions, resulting in 30 rectangular patches. This division allows us to obtain the current at 
the center of the plate directly. 

The current response is shown on Fig. 3. The response of the explicit form agree very 
well with IDFT, but the late-time oscillations are in this one, which is the big problem of the 
explicit form. That instability depends on the shape of discretization patches and the choice of 
the time step [4]. The late-time oscillations can be put down with using the averaging 
technique [3], but it makes a little time shift in the results. 

 
Fig. 3: Transient current at the center of a conducting 0.5 m x 0.5 m plate located in the 

xy plane with 79 unknowns 

The response of the implicit form is less accurate with comparing IDFT (Fig.3), but the 
time late oscillations are not here. The less accuracy is caused by the side-finite difference in 
(4).  



  

4 CONCLUSION 

In this paper, the computing of the transient responses of antennas and scatterers is 
presented. The explicit and implicit forms are derived from TD-EFIE. Their properties are 
shown on the example of square plate, which is excited as a scatterer. 
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