

CIPHERING WITH CHAINED DISCRETE CHAOTIC MAPS

Ing. Rostislav HUČKA, Doctoral Degreee Programme (3)
Dept. of Radio Electronics, FEEC, BUT

E-mail: hucka@feec.vutbr.cz

Supervised by: Prof. Vladimír Šebesta

ABSTRACT
Direct chaotic transformation offers very effective way to encrypt and decrypt data.

This paper describes the usage of more discrete chaotic maps to create an algorithm, which is
able to use long keys and variable key length. Designed algorithm has very good ratio
between complexity and security.

1 INTRODUCTION
The original idea [2] of ciphering with discrete chaotic maps used only one chaotic system

created from a skew-tent map with a special quantisation described in the same article too. There is
used a discrete chaotic transformation defined by the map. There is required to repeat whole chaotic
transformation for several times due security reasons. This system can be only hardly modified to use
long enough keys (128 bit and more) or even variable length of keys.

Plaintext

Key
Discrete

chaotic map
generation

Chaotic
transformation

n
iterat ions

Ciphertext

Fig. 1: The original ciphering algorithm

This algorithm could be modified to reach the goals above according following scheme (fig. 2).
Instead usage of the same chaotic transformation in several iterations we can create more chaotic
processes and use them one after another. Those chaotic transformations are created according same
scheme, but with different subkeys, so there is required to split long input key to suitable number of
suitable long keys. There is also required to split input data into segments, each segment comes
through the ciphering process separately. This approach to plaintext was also used in the original
cryptosystem design too.

The choice of the segment size has pivotal impact on the realization of the whole ciphering
process. For a small length of the segments is possible to use tables to perform calculations, so the

overall speed of the entire process is rapidly increased. Every chaotic transformation is performed by
simple indexation instead much more complicated calculation and rounding from a chaotic map.
Further the usage of the tables allows us to use almost any discrete chaotic map, which defines 1:1
transformation, so it assigns exactly one output value to each input value. The set of input and output
values is identical too. Arbitrary ciphering table can be easily numerically inverted, so we can use
even those methods of discrete chaotic map generation, which prevents us to perform an analytic map
inversion [1].

We have to also design the algorithm to perform enough chaotic transformations to make final
correlation between plaintext and ciphertext as low as is required for security.

Plaintext

Key

Discrete
chaotic map 1

generation

Ciphertext

Su
bk

ey
 se

gm
en

ta
tio

n

Discrete
chaotic map 2

generation

Discrete
chaotic map n

generation

Chaotic
transformation

1

Chaotic
transformation

2

Chaotic
transformation

n

Fig. 2: A new ciphering algorithm, which uses chaotic transformation chaining

2 CIPHERING PROCESS

For the chaotic transformation in each step can be used arbitrary discrete chaotic map M, which
meets following conditions:

 M : XKY, X, YJ{1, 2, ..., m} (1)
 y = M(x)

 ¢xJ{1, 2, ..., m}, x�M(x)
Every used map is created according subkey ki, which has to have the same size for every used

map. Generally there can be used also maps generated in different ways, the only condition is the same
size of the subkey, but in the one map could be used also more than one subkey.

Plaintext is splitted into segments and each segment passes through the ciphering algorithm
independent on others. The choice of the segment size is essential for further design of algorithm. To
allow the optimal performance is good to fulfill

 m = 28k, kJZ (2)
If it isn’t possible, then is necessary to add some padding into segmentation phase, but it is also

a certain performance hit. The choice of the segment size also depends on the chaotic map, which is
used to perform chaotic transformation. If we can’t create inverted discrete chaotic map M satisfying
(3) analytically,

 x = M(M(x)) (3)
so we have to realize numeric inversion. Considering memory requirements for tables is highly

recommended to limit the segment size to 24-bit or less. If we calculate both forward and reverse
chaotic transformation directly (not using tables), the segment size could be larger.

The ciphering process for one segment pi is described below

 ci = M1(M2(...Mn(pi))) (4)
And the reverse deciphering process

 di = M1(M2(...Mn(ci))), where (5)
 pi plaintext segment
 ci ciphertext segment
 di decrypted data segment (pi = di)
 ¢jJ[1..n], xJ{1, 2, ...m}, x = Mj(Mj(x))

3 PRACTICAL EXPERIMENT
For the first numeric realization was chosen the segment size not so large, only 16-bit. Whole

algorithm then doesn’t require much memory for ciphering tables. If we use 256-bit keys, the overall
required memory space is only 2 MB. Due table usage there was chosen a 16-bit segmentation for

subkeys too. Each discrete chaotic map Mj and Mj is created according [2].

 Mj(x) = m
kj

x , xJ[1, kj] (6)

 Mj(x) = m
m−kj

(m − x + 1, xJ(kj, m]

 Mj(x) = x1, g(x) = x, x1
kj
> m−x2

m−kj (7)

 Mj(x) = x2, g(x) = x, x1
kj
☯

m−x2
m−kj

 Mj(x) = x1, g(x) = x + 1
 x1 =µ1

m kjx¶
 x2 = (

kj
m − 1)x +m

 g(x) = x +
kjx
m −

kjx
m + 1

Despite the chosen maps are available inverted maps as analytic formula, there were used the
tables. Without tables the performance of this algorithm is poor so it conflicts with the general
requirements. If we use tables the performance of this algorithm as almost the same as in original
algorithm with one key, one table and many iterations.

4 CONCLUSION
Resulting source code is written in C language and it is freely available [5] under GPL license.

No special optimization of I/O operations was done in the source code in order to increase

performance. The usage of chained chaotic processes has positive impact (fig. 3) to lowering of the
correlation coefficient between plaintext and ciphertext in dependence to number of iterations (and
overall key length too).

Correlation coefficient between plaintext and ciphertext decreases faster than in original
ciphering algorithm. The small increase of the correlation coefficient for 9 and more iteration is a
parasite effect, which was also discussed in [2]. It also occurs in an algorithm with only one chaotic
map used .

Ciphering algorithm with chained chaotic maps compared to original algorithm with only one
chaotic map has low sensitivity to small change of the key. If there was only one bit in the key
changed and same plaintext was ciphered with those two keys, there was correlation coefficient
between those different ciphertexts greater than 0.9, what is a security risk. This problem can’t be
avoided even with a different choice of the used chaotic maps. But correction still can be performed
using key modification. Whole key can be ciphered with itself (input key is used both as key and as
plaintext) and the resulting ciphertext as key for ciphering user data.

For the overall performance analysis there was measured dependence of the average ciphering
speed on number of iterations (and key length). The period necessary to generate tables was included
in the measured time. Tables necessary to generate tables is constant (depends only on computer
speed) and the period of ciphering itself depends on the number of used chaotic maps. Measured
algorithm used both 16-bit subkey and data segment. Performance of this algorithm was done on PC
with AMD Athlon XP 2600+ CPU.

0 2 4 6 8 10 12
10-3

10-2

10-1

100

Number of iterations

C
or

re
la

tio
n

co
ef

fic
ie

nt

Tested algorithm
Reference with one map
AES/Rijndael

Fig. 3: Dependence of the correlation coefficient between plaintext and ciphertext on

number of iterations

2 3 4 5 6 7 8 9 10 11 12
1000

2000

3000

4000

5000

6000

7000

8000

Number of iterations

O
ve

ra
ll

ci
ph

er
in

g
sp

ee
d

[k
B

/s
]

Fig. 4: Overall ciphering algorithm performance

ACKNOWLEDGEMENTS

This research has been supported by the research grant GACR (Grant Agency of Czech
Republic) No. 102/04/0557 "Development of the digital wireless communication resources."
The paper has been prepared as a part of the solution of FRVŠ project No. 1624/2004.

REFERENCES

[1] Hučka, R.: New Approach to Design of the Nonlinear Digital Chaotic Maps. In
Radioelektronika 2003 Conference Proceedings. Radioelektronika 2003. Brno, Czech
Republic: Institute of Radio Electronics, 2003, p. 103 - 107. ISBN 80-214-2383-8.

[2] Masuda, N., Kazuyuki, A.: Cryptosystems With Discretized Chaotic Maps. In IEEE
Transactions on Circuits and Systems - I. 2002, vol. 49, no. 1, 28-40.

[3] Kennedy, M. P., Rovatti, R., Setti, G.: Chaotic Electronics in Telecommunications. New
York, CRC Press, 2000, ISBN 0-8493-2348-7.

[4] Schneier, B.: Applied Cryptography. New York, John Wiley & Sons, Inc., 1996. ISBN 0-
471-11709-9

[5] Hučka, R.: Využití chaotických map v kryptografii [online]. Brno: FEKT VUT v Brně,
2003. Dostupný z WWW: <http://wes.feec.vutbr.cz/~hucka>.

