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ABSTRACT 
This paper describes a new method for the suppression of noise in images based on 

wavelet transform [3]. The method relies on two criteria. The first is a traditional criterion of 
smoothness of the image based on an approximation of the local Hőlder exponent via the 
wavelet coefficients. The second, novel criterion takes into account geometrical constraints, 
which are generally valid for natural and also simulated images. The smoothness measure and 
the geometrical constraints are combined in the described method in Bayesian probabilistic 
formulation, and are implemented as a Markov random field (MRF) image model. The 
manipulation of the wavelet coefficients is consequently based on the obtained probabilities. 
This method is proposed to quantitatively improve noise suppression comparing to classical 
methods based on wavelet transform. Qualitative improvement of images is also required 
(subjective sensation of sharpness and contrast).  

1 INTRODUCTION 

Although image acquisition techniques yield an ever improving quality, there is a need 
for post-processing methods to remove noise from images. The problem of suppressing noise 
in digital images is based on the model y = f + n, where f denotes the true noise-free pixel 
value, y the observed noisy pixels and n the observation noise. Other efficient methods are 
based on statistical modification of coefficients of wavelet transform via masks. The method 
proposed in this paper combines the wavelet multi-resolution concept with a Markov random 
field model. 

2 THE PROPOSED METHOD 

In the described method, we propose to use redundant wavelet transform to obtain same 
number of wavelet coefficients in each decomposition level. We use the following notation. 
W denotes a set of wavelet coefficients of one component in a particular level. For instance, 

{ }JjwHL
lj == ,W  is a vertical component at level J. Since the level and components type do 

not matter for discussion in other text, the coefficients will carry the position l as subscript. 



  

The set of indices of the coefficients within a level is denoted by L. Hence, { }Llwl ∈=W . 
Then we initiate a set of  binary labels { }Llxl ∈=X , which assign value label 0 or 1 to each 
coefficient, depending on the value information of the measure in comparison to computing 
threshold value based on estimate noise energy in image. This set is referred to as a mask. 
These labels xl correspond to the coefficients wl. The information of the measure that indicates 
how noisy the coefficients are, is similarly represented as a set { }Llml ∈=M . In the 
proposed denoising method, the ml values are based on the local Hőlder exponent [1] at the 
position l in the image. This value has the same form as wavelet coefficients and masks. 

In contrast to other methods [3], the proposed method does not attempt to find a set of 
masks for the given noisy image, that are optimal according to a single criterion. The method 
is based on the following approach. For any particular masks X, we can specify how probable 
it is, taking into account the given image and chosen measure. According to Bayes rule, the a 
posteriori probability is:   

( ) ( ) ( ) ( )MXXMMX PPPP /⋅=    (1.1) 

We can say that there is not reason why a priori probability P(M) will be considered as a 
uniform distribution over its domain. Therefore a priori there is no reason why a set M of 
Hőlder exponents should be more probable than another one. Then: 

     ( ) ( ) ( )XXMMX PPP ⋅∝     (1.2) 

The factor P(M|X) is the conditional probability. The second factor P(X) is the a priori 
probability. Thus, M is considered as a multivariate observation, and X is an unknown 
parameter of which the a priori distribution is known. 

Both the a priori and the conditional probability are modelled as a Gibbs probability 
function. This has an advantage that the variables xl and ml can be described directly with an 
image model using a Markov random field. The relation between Markov random field and 
Gibbs probability functions is expressed in the Hammersly-Clifford theorem. 

THEOREM (Hammersly-Clifford): Probability function is a Markov random field with 
respect to a neighbourhood system if and only if it is a Gibbs distribution with respect to same 
neighbourhood system. 

The a priori probability P(X) expresses that a priori, when M is not taken into account, 
the masks are not all equally probable. This knowledge about masks can be introduced and 
exploited. We know that relatively few, large wavelet coefficients carry the essential 
information of an image with little noise. These coefficients tend to be clustered around the 
location of important features in the image, such as edge discontinuities, peaks, and corners. 
We can thus a priori expect that 0 and 1 mask labels appear in more or less separated clusters. 
Via the a priori probability we can assign a higher probability to masks that have this 
property. The idea is to assign a higher probability to masks in which pixels with the 0-label 
and pixels with the 1-label appear in separated, continuous clusters. We also assume that there 
is no distinction between the spatial directions, since the method should be rotation invariant, 
and that the model does not vary over the spatial domain. In other words, it is an isotropic and 
homogeneous model. 

An a priori model of distribution wavelet of coefficients in neighbourhood should be 
general enough to be valid for a wide class of natural and synthesized images. Such an a 
priori model, given as a Gibbs probability function and defined on a corresponding Markov 
random field, is described below. 



  

The states of the Markov random field are binary mask labels xl in neighbourhoods 3-
by-3. The a priori probability expresses that masks in which neighbouring state vectors have 
the same label value, are more probable than those with different values. Computation is 
based on a comparison of the central state with its neighbours. The a priori probability is 
thus: 

( ) ( )( ) ( ) ( )∑=−⋅=
l

Nl
VVwithV

Z
P XXXX exp1

   (1.3) 

To find an expression for the conditional probability P(M|X), we need to translate a 
classic binary decision based on the chosen measure (the Hőlder exponent) into a probability. 
For the conditional probability, there is no need for interaction between neighbours in the 
system. Neighbourhood are thus individual sites of the wavelet coefficients. Conditional 
probability is then: 

( ) ( ) ( )



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l
llll

l
xmVxmPP expXM     (1.4) 

The individual probabilities P(ml|xl) express that if the label xl = 1 (coefficients wl is kept 
unchanged), there is more probable that Hőlder exponents ml is above a threshold T than it is 
below. If the label xl = 0, there is more probable that Hőlder exponents ml is below T than it is 
above. Since the prior distributions P(ml) are assumed to be uniform, the conditional 
probabilities should meet the condition ( ) ( ) 1C10 ==+= llll xmPxmP , where C1 is a 
constant. The probability functions are usually represented by piecewise continuous potential 
functions V(ml|xl), each with two constant parts and linear transition around the threshold. 

A priori and conditional probabilities are specified, therefore we can compute the a 
posteriori probability P(M|X) for every X. In practice, the method actually computes the 
marginal probability P(xl = 1|M) for each “clean” coefficient. “Clean” coefficient is 
coefficient without noise. The manipulation of the coefficient is a multiplication with this 
probability: 

( )M1=⋅= ll
new
l xPww     (1.5) 

The method thus involves adaptive shrinkage of wavelet coefficient with a factor, that can be 
different for each coefficient. The identification and modification of wavelet coefficients 
(both “clean” and noisy) are more conservative and less radical then in other methods based 
on classic binary decision (coefficient is only “clean” or affected by noise). 

Equation showed how the method uses marginal probabilities P(xl = 1|M) to manipulate 
the coefficients. They are derived from the probability function P(X|M), in theory by 
calculating a weighted sum over the masks, in which the weights are the a posteriori 
probabilities. The sum for P(xl = 1|M) incorporates the masks in which the label xl = 1 and is 
defined as:  

( ) ( ) ( )




=
=
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MXXM  (1.6) 

The above formula implies that the method does not employ a binary mask, but a (marginal) 
averaged mask. Reliable estimations can be computed with special integrators for large 
probability spaces, called stochastic samplers. Stochastic samplers used in the described 
method for noise reduction is a classical Metropolis algorithm [2]. The aim is to compute an 
estimation of selected samples from space of possible masks. The Metropolis sampler is 



  

called Markov chain – Monte Carlo method. The stochastic sampler generates a sample masks 
in consecutive series (Markov chains). In addition, the generation new samples is based on a 
random number generator, which corresponds Monte Carlo method. The sample masks are 
not uniformly selected, as in ordinary Monte Carlo method, but in proportion to their posterior 
probability ( )MX jP ˆ . States that have a higher probability, thus have a higher probability of 
being selected as a sample state. Generation obtains sample masks as follow. A new candidate 
sample mask 1

ˆ
+′jX  is generated from previous sample jX̂  in one or a few positions l, as in 

practice means that binary labels xl previous sample jX̂  are switching from 0 to 1, and vice 
versa. Then it depends on the probability ratio ( ) ( )jj PPr XX /1+′= , whether the candidate 
state is accepted as a next sample state. The probability that the candidate state is accepted, is 
higher, when the probability ratio is higher. Therefore, in the stochastic samplers is not 
necessary to explicitly compute the probabilities ( )MX 1

ˆ
+′jP  and ( )MX jP ˆ , which is a 

significant advantage comparing to ordinary Monte Carlo method. The probability ratio to 
decide upon candidate state acceptance can be efficiently calculated because of the Markov 
Random Field-Gibbs type probability [1]. 

In case of acceptance is the candidate state chosen as actual state mask 1
ˆ

+jX . This 
random perturbation and acceptance tests iterated in different positions up to updated all 
position l in L. The all estimates are updated in this point, and one iteration is complete. 

3 OVERVIEW OF THE PROPOSED METHOD 

1) Compute the redundant wavelet transform of the noisy image. 

2) For each component W compute approximations of the local Hőlder exponent ml for 
all l ∈ L. 

3) Generate an initial mask by applying the threshold T to ml and run the stochastic 
sampling procedure with a posteriori probability 

4) Modify the wavelet coefficients W with the marginal probability. 

5) Reconstruct the image with suppressed noise from the modified coefficients. 

 

 

 
Fig. 1: The block diagram of the proposed method  

4 SUMMARY AND CONCLUSIONS 

The described method respects geometrical constraints of a processed image using a 
priori knowledge about distribution of wavelet coefficients in relation to edges of image. The 
method does not use classical binary decision (coefficient is only “clean” or affected by 
noise). The described method achieve these properties using a stochastic sampler based on 
Metropolis method.  

In this method we use three distributions to generate random numbers (normal 
distribution with µ=0.5 and σ=0.25, beta distribution with parameters a=4 and b=0.75 and 
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uniformly distributed, see Figure 2, left panel). Iteration process of the method converges to 
optimum for three distributions as shown on Figure 2, right panel. In Figure 3, an original 
ultrasound image (left panel) and the resulted image with gain SNR=8.1 dB (right panel) are 
shown. 
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Fig. 2: Left: Distributions used to generate random numbers. Right: Ratio of accepted 

states to all states depending on iteration. 

 
Fig. 3: Left: Detail ultrasound (US) image of four phantoms with different absorption US 

wave. Right: Resulted image with gain SNR=8.1 dB for Beta distribution (see the text). 
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