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ABSTRACT

In this paper the solution of a reaction-diffusion model of the bacterial colony growth
is presented. The finite difference method with two computational schemes, explicit scheme
and method of lines, is used for discretisation. Testing calculations performed with imple-
mentation of the described methods are compared with each other by evaluation of ob-
tained result differences and time-consumption. With respect to the gained information the
explicit scheme is picked out for trying to reproduce the published results of the reaction-
diffusion model. Obtained solutions are briefly descussed.
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1 BACILLUS SUBTILIS COLONY PATTERNS

It is known that colonies of bacterial species calledBacillus subtilisexhibit diverse
growth patterns. The colony patterns change when two enviromental conditions, the con-
centration of nutrientCn and agarCa, are varied. Fig. 1 shows morphological diagram
of Bacillus subtiliscolony patterns [2], where patterns are qualitatively classified into five
types.
If concentration of nutrient is low and agar concentration is high (see Fig.1, region A) the
colony patterns show dendritic growth with branch structures. If nutrient concentration is
increased with fixed higher agar concentration, each branch becomes thicker and the colony
has a roughly round shape with rough envelope (see Fig.1, region B). If agar concentration
is decreased with fixed lower nutrient concentration, the colony shows dense-branching
pattern with smooth envelope (see Fig.1, region E). If nutrient concentration is high and
agar concentration is low (see Fig.1, region D), the colony is homogenously spreading and
developing disk-like pattern. In the last region C, bacteria actively move and suddenly stop
while performing cell-division, then repeating the cycle so we can observe the concentric
ring pattern [1].



Figure 1: Morfological diagram ofBacillus subtiliscolony patterns [2]

2 MATHEMATICAL MODEL OF BACTERIA COLONY GROWTH

There are two types ofBacillus subtilisbacteria species investigated, one is the active
bacteria which move, grow and perform cell-division. The other ones are inactive bacteria
which do nothing at all. LetA(t,x,y) be a density of the active bacteria andI(t,x,y) be
a density of the inactive bacteria at position(x,y) and timet. Concetration of nutrient be
denoted asN(t,x,y). Now we can write the reaction-diffusion model forA, I andN [1].

∂A
∂t

= ∇(dA∇A)+νg(N)A−a(A,N, I)A+b(A,N, I)I

∂N
∂t

= dN4N−g(N)A (1)

∂I
∂t

= a(A,N, I)A−b(A,N, I)I ,

wheredA is the motility of active bacteria anddN is the diffusion rate of nutrients.νg(N)
is the growth rate with a positive constantν, a(A,N, I) andb(A,N, I) are conversion rates
between active bacteria and inactive ones.
If the agar concentrationCa is low, the substrate is soft then bacteria can move and it
can be described by a normal diffusion. But, if agar concentration is higher, bacteria can
hardly move but they perform cell-division and the colony can expand by a sort of “popu-
lation presure” of bacteria. This situation can be described in terms of nonlinear diffusion
dA = dA(B) with total density of bacteriaB = A+ I . Nonlinear diffusion is monotonously



increasing withB and satisfingdA(0) = 0. As a form ofdA, we take

dA(B) =
{

d0 for soft agar
d1B for hard agar,

(2)

whered0 andd1 are suitable positive constants. Because nutrients diffuse in the agar, we
takedN to be a positive constant. The growth rateg(N) is monotonously increasing with
nutrients concentrationN. For simplicity we specifyg(N) = αN as the Malthusian growth
rate with suitable positive constantα.
By the observation that once active bacteria become inactive ones, they never become
active again unless food is added, we specifyb(A,N, I) = 0. When the nutrients concen-
tration becomes lower, the activity of cells becomes weaker. That’s why, we takea(A,N)
as a monotonously decreasing withN. Unfortunately the dependency of the active bacteria
a(A,N) onA is still unclear, but some observations show thata(A,N) is also monotonously
decreasing withA [1].
By using suitable dimensionless methods, we can rewrite (1) as the following reaction-
diffusion system of equations, whereu and w are dimensionless population density of
active respectively inactive bacteria,v is the dimensionless concentration of nutrients.

∂u
∂t

= ∇(d(b)∇u)+uv− u
(1+ u

a1
)(1+ v

a2
)

∂v
∂t

= 4v−uv (3)

∂w
∂t

=
u

(1+ u
a1

)(1+ v
a2

)
,

whereb = u+v, d(b) is the ratio of the diffusion ratesdA anddN, a1 anda2 are suitable
positive constants.
We consider (3) in a two-dimensional bounded regionΩ. The initial conditions are

u(0,x,y) = u0(x,y)≥ 0

v(0,x,y) = v0 > 0, t > 0,(x,y) ∈Ω (4)

w(0,x,y) ≡ 0.

We takeu0(x,y) to be delta-like function in the center ofΩ andv0 to be a positive constant
in Ω. The boundary conditions on the boundary∂Ω are

∂u
∂n

= 0 =
∂v
∂n

, t > 0,(x,y) ∈ ∂Ω, (5)

wheren is the outward normal vector on∂Ω.

3 NUMERICAL SOLUTION OF REACTION-DIFFUSION MODEL

We use the finite difference method (FDM) for spatial discretisation of the problem
(3)-(5). FDM is a method for solving partial differential equations which is based on Taylor



∑(u1−u2)2 V1 vs.V2 V2 vs.V3 V3 vs.V4 V4 vs.V5

ML 2,6974 0,3847 0,0206 0,0010
ES 2,9460 0,4023 0,0208 0,0010

max| u1−u2 | V1 vs.V2 V2 vs.V3 V3 vs.V4 V4 vs.V5

ML 0,8908 0,4555 0,1096 0,0227
ES 0,9131 0,4651 0,1103 0,0227

Table 1: Values of∑(u1−u2)2 and max| u1−u2 | for various space discretisations

expansions and direct application of the derivatives definition. The basic idea of FDM is to
express derivatives from developed Taylor expansions. E.g. for given functionu(x), it can
be simply shown that approximation of derivative∂u

∂x ≡ ux is

ux(x)=
u(x+∆x)−u(x)

∆x
+O(∆x)=

u(x)−u(x−∆x)
∆x

+O(∆x)=
u(x+∆x)−u(x−∆x)

2∆x
+O(∆x2).

By using similar techniques we can obtain formulas for higher-order derivatives. FDM is
usually applied on uniform mesh with high degree of mesh regularity, i.e. mesh must be
set up in a structured way, whereby the mesh points in ann-dimensional space are located
at the intersections ofn family of rectilinear or curved lines. These curves appear as a form
of numerical coordinate lines and each point must lie on one and only one line of each
family [3].
If we replace all the spatial derivatives by their approximations and the temporal derivative
by the forward formula, i.e.ut(t)≈ u(t+∆t)−u(t)

∆t , we obtain theexplicit scheme(ES).Method
of lines(ML) is a semi-discrete schema in which spatial derivatives are replaced only by
particular difference formulas but the temporal derivatives are still continuous. We obtain
an ordinary differential equation (ODE) or a system of ODE’s which can be solved by using
of standard methods. In our computation we use the fourth-order Runge-Kutta method.
First of all we performed several calculation of the system of equation (3)-(5). We used
“stable” parameters (Fig.1, region D) which have been published in [1], both methods
and various fine-meshed space (V1 : ∆x = 1 ∆t = 0,2; V2 : ∆x = 0,5 ∆t = 0,05; V3 : ∆x =
0,25∆t = 0,01;V4 : ∆x= 0,125∆t = 0,002;V5 : ∆x= 0,0625∆t = 0,0005). We evaluated
mutual difference of the obtained results, time-consumption of the particular calculations
and finally we picked out the best scheme. Criterion of the solution distance is the norm in
spaceL2(t0, t1;Ω) which is approximated by∑(u1−u2)2:∫ t1

t0

∫
Ω
(u1−u2)2≈∑(u1−u2)2.

u1 andu2 are results of given scheme for two particular discretisations in the same mesh
point and time. We also evaluated “maximum error” max| u1−u2 | and “relative error”
max|u1−u2|

u1+u2
to observe error spreading in the last time step.

We pick out the explicit scheme for reproducing the published results by reason that all
the error values of both schemata are almost identical (see Tab.1) but using of method of
lines is significantly more time-consuming than using of explicit scheme.



Figure 2: Comparison of our calculated results (b, d) with published ones (a, c) [1]. (a, b)
show disk-like patterns and (c, d) show dendritic branch patterns.

4 CONCLUSION

During numerical solution of reaction-diffusion system of equations (3)-(5) we find
out that we are unable to reproduce all the results published in [1]. We obtain only the sym-
metric results namely homogeneously spreading and developing disk-like pattern of bac-
terial colony and symmetric version of dendritic growth (see Fig.2). The reason is simple,
the model (3) contains symmetric equations and the initial conditions are also symmetric so
that we should gain just the symmetric solutions. To obtain a nonsymmetric solution like
dendritic branching pattern we propose to introduce a small noise function into the model
or to apply a method using unstructured meshes. Now we are working on implementation
of the finite volume scheme which uses such an unstructured mesh.
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