
SIMPLE SEMI-CONDITIONAL ET0L GRAMMARS

Martin ŠVEC, Doctoral Degree Programme (1)
Dept. of Information Systems, FIT, BUT

E-mail: svecm@fit.vutbr.cz

Supervised by: Dr. Alexander Meduna

ABSTRACT

The present contribution introduces and studies simple semi-conditional ET0L gram-
mars (SSC-ET0L grammars for short). It is demonstrated that SSC-ET0L grammars with
permitting and forbidding conditions of length no more than one and two, respectively,
generate all the family of recursively enumerable languages; if erasing productions are not
allowed, these grammars generate precisely the family of context-sensitive languages.

1 INTRODUCTION

So far the language theory has defined and investigated a number of sequential
grammars possessing an additional regulation mechanism based on permitting and for-
bidding context conditions (see [3], [4]). Introducing this regulation to the area of parallel
grammars, Meduna and Švec have recently defined so-called forbidding ET0L grammars
(see [5]). In this contribution, simple semi-conditional ET0L grammars, another condi-
tional version of ET0L grammars, is presented. By analogy with sequential simple semi-
conditional grammars, productions of SSC-ET0L grammars have attached no more than
one context condition. We demonstrate that SSC-ET0L grammars whose permitting and
forbidding conditions are of length no more than one and two, respectively, characterize all
the family of recursively enumerable languages. However, if erasing productions are not
allowed, SSC-ET0L grammars generate only the family of context-sensitive languages.

2 DEFINITIONS

This contribution assumes that the reader is familiar with the language theory (see [2]).
LetV be an alphabet.V∗ denotes the free monoid generated byV under the operation

of concatenation. Letε be the unit ofV∗ andV+ =V∗−{ε}. Given a word,w∈V∗, |w|
represents the length ofw and alph(w) denotes the set of all symbols occuring inw. For
everyw∈V+, sub(w) is the set of all nonempty substrings ofw. Furthermore, sub(w,k) =



{x∈ sub(w) : |x| ≤ k}. Let first(w) denote the leftmost symbol ofw. Given a pair of
integers,r ands, max(r,s) denotes the maximal value ofr ands.

A simple semi-conditional ET0L grammar(SSC-ET0L grammarfor short) is defined
as at+3-tuple,G= (V,T,P1, . . . ,Pt ,S), t ≥ 1, whereV, T, andSare the total alphabet, the
terminal alphabet (T ⊂V), and the axiom (S∈V−T), respectively. EachPi is a finite set of
productions of the form(a→ x,α,β) with a∈V, x∈V∗, α,β ∈V+∪{0}, and 0∈ {α,β},
where 0 is a special symbol; ifα = 0 or β = 0, the corresponding condition is missing.
SSC-ET0L grammar without erasing productions is said to bepropagating(SSC-EPT0L
grammarfor short). G hasdegree(r,s), wherer ands are natural numbers, if for every
i ∈ {1, . . . , t} and(a→ x,α,β) ∈ Pi , α 6= 0 implies|α| ≤ r andβ 6= 0 implies|β| ≤ s. Let
u,v∈V∗, u= a1a2 . . .aq, v= v1v2 . . .vq, q= |u|, a j ∈V, v j ∈V∗, andp1, p2, . . . , pq is a se-
quence of productionsp j =(a j → v j ,α j ,β j)∈Pi for all j = 1, . . . ,qand somei ∈{1, . . . , t}.
If for every α j 6= 0, α j ∈ sub(u), and for everyβ j 6= 0, β j 6∈ sub(u), thenu directly derives
v according top1, p2, . . . , pq in G, denoted byu⇒G v [p1, p2, . . . , pq]. The language ofG is
defined asL(G) = {x∈ T∗ : S⇒∗

G x}. If t = 1 thenG is called an SSC-E0L grammar. IfG
is a propagating SSC-E0L grammar thenG is said to be an SSC-EP0L grammar. The fam-
ilies of languages defined by SSC-EPT0L, SSC-ET0L, SSC-EP0L, and SSC-E0L gram-
mars of degree(r,s), and by SSC-EPT0L, SSC-ET0L, SSC-EP0L and SSC-E0L gram-
mars of any degree are denoted bySSC-EPT0L(r,s), SSC-ET0L(r,s), SSC-EP0L(r,s),
SSC-E0L(r,s), SSC-EPT0L, SSC-ET0L, SSC-EP0L, andSSC-E0L, respectively. The
families of context-free, context-sensitive, and recursively enumerable languages are de-
noted byCF, CS, andRE, respectively.

3 RESULTS

Let us investigate the generative power of SSC-ET0L grammars with erasing pro-
ductions. First, we establish a normal form of recursively enumerable languages.

Lemma 1. Every L∈ RE can be generated by a phrase-structure grammar, G= (NCF ∪
NCS∪T,T,P,S), where NCF, NCS, and T are pairwise disjoint alphabets, and every pro-
duction in P is either of the form AB→ AC or A→ x, where B∈ NCS, A,C ∈ NCF,
x∈ {ε}∪NCS∪T ∪N2

CF.

Proof. To get the required forms of productions, modify Penttonen normal form of phrase-
structure grammars, see [6].

The following lemma proves that every recursively enumerable language can be de-
fined by an SSC-E0L grammar of degree(1,2).

Lemma 2. RE⊆ SSC-E0L(1,2).

Proof. Let G = (NCF ∪NCS∪ T,T,P,S) be a phrase-structure grammar of the form of
Lemma 1. Then, letV = NCF ∪NCS∪T andm be the cardinality ofV. Let f be an ar-
bitrary (but fixed) bijection fromV to {1, . . . ,m} and f−1 be the inverse off . Set

M = {#}∪{〈A,B,C〉 : AB→ AC∈ P,A,C∈ NCF,B∈ NCS} ∪
{〈A,B,C, i〉 : AB→ AC∈ P,A,C∈ NCF,B∈ NCS,1≤ i ≤ m+2}

W = {[A,B,C] : AB→ AC∈ P,A,C∈ NCF,B∈ NCS}.



Next, construct an SSC-E0L grammar of degree(1,2), G′ = (V ′,T,P′,S′), where
V ′ =V ∪M∪W∪{S′} (V, M, W, and{S′} are pairwise disjoint). The set of productions,
P′, is defined in the following way:

1. add(S′ → #S,0,0) to P′;

2. if A→ x∈ P, A∈ NCF, x∈ {ε}∪NCS∪T ∪N2
CF, add(A→ x,#,0) to P′;

3. for all AB→ AC∈ P, A,C∈ NCF, B∈ NCS, add these productions toP′:

(a) (#→ 〈A,B,C〉,0,0), (B→ [A,B,C],〈A,B,C〉,0),
(〈A,B,C〉 → 〈A,B,C,1〉,0,0), ([A,B,C]→ [A,B,C],0,〈A,B,C,m+2〉);

(b) (〈A,B,C, i〉 → 〈A,B,C, i+1〉,0, f−1(i)[A,B,C]), where 1≤ i ≤ m, i 6= f (A);

(c) (〈A,B,C, f (A)〉 → 〈A,B,C, f (A)+1〉,0,0);

(d) (〈A,B,C,m+1〉 → 〈A,B,C,m+2〉,0, [A,B,C]2),
(〈A,B,C,m+2〉 → #,0,〈A,B,C,m+2〉[A,B,C]);

(e) ([A,B,C]→C,〈A,B,C,m+2〉,0);

4. for all X ∈V, add(X → X,0,0) to P′;

5. add(#→ #,0,0) and(#→ ε,0,0) to P′.

Let us explain howG′ works. During the simulation of a derivation fromG, every
sentential form starts with an auxiliary symbol fromM, called master. This symbol deter-
mines current simulation mode and controls the next derivation step. Initially, the master is
set to #. In this mode,G′ simulates context-free productions (see (2)); notice that symbols
from V can always be rewritten to itself by (4). To start the simulation of a non-context-
free production of the formAB→ AC, G′ rewrites the master to〈A,B,C〉. In the following
step, chosen occurences ofB are rewritten to[A,B,C]; all other productions except (4) are
blocked. At the same time, the master is rewritten to〈A,B,C, i〉 with i = 1. Then,i is incre-
mented by one as long asi is less or equal to the cardinality ofV. Simultaneously, master’s
conditions test that for everyi such thatf (i) 6= A, no f (i) appears as the left neighbor of
any occurence of[A,B,C]. Finally, G′ checks that there are no two adjoining[A,B,C] and
[A,B,C] does not appear as the right neighbor of the master. At this point, the left neighbors
of [A,B,C] are necessarily equal toA and every occurence of[A,B,C] is rewritten toC. In
the same derivation step, the master is rewritten to #.

Observe that in every derivation step, the master enables only a given subset of pro-
ductions according to the current mode. Indeed, it is not possible to combine context-free
and non-context-free simulation modes. Furthermore, no two different non-context-free
productions can be simulated at the same time. The simulation ends when # is erased by
(#→ #,0,0). After that, no next production modifying the sentential form can be used.

To establishL(G) = L(G′), we should formally prove that for everyw∈ T∗,

S⇒∗
G w if and only if S′ ⇒∗

G′ w.

However, due to limited number of pages of the contribution, the proof is omitted.



Lemma 3. SSC-ET0L(r,s)⊆ RE for any r,s≥ 0.

Proof. Of course, this lemma follows from Church’s thesis. However, let us demonstrate
an effective algorithm proving the inclusion.

For r = 0 and s= 0, we haveSSC-ET0L(0,0) = ET0L ⊂ RE. Next, assume
that r and/or s are nonzero. LetL be a language generated by an SSC-ET0L gram-
mar G = (V,T,P1, . . . ,Pt ,S) of degree(r,s), for somer,s≥ 0, r + s > 0, t ≥ 1. Set
k=max(r,s). Let M = {x∈V+ : |x| ≤ k}. For everyPi , 1≤ i ≤ t, set cf(Pi) = {a→ z :
(a→ z,α,β) ∈ Pi , a∈V, z∈V∗}. Then, setNF = {〈X,x〉 : X ⊆ M, x∈ M}, NT = {bXc :
X ⊆ M}, NB= {dQe : Q⊆ cf(Pi), 1≤ i ≤ t}, V ′ = NF ∪NT ∪NB∪{.,/,$,S′}. Construct
the phrase-structure grammarG′ = (V ′,T,P′,S′) with the finite set of productionsP′ de-
fined as follows:

1. addS′ → .〈 /0,ε〉S/ to P′;

2. for all X ⊆ M, x∈ (Vk∪{ε}), andy∈Vk, add〈X,x〉y→ y〈X∪sub(xy,k),y〉 to P′;

3. for all X ⊆ M, x∈ (Vk∪{ε}), y∈V∗, |y| ≤ k, add〈X,x〉y/→ ybX∪sub(xy,k)c/;

4. for all X ⊆ M and Q ⊆ cf(Pi), i = 1, . . . , t, such that for everya → z∈ Q, there
exists(a→ z,α,β) ∈ Pi , whereα 6= 0 impliesα ∈ X andβ 6= 0 impliesβ 6∈ X, add
bXc/→ dQe/ to P′;

5. for everyQ⊆ cf(Pi) for somei ∈ {1, . . . , t}, a∈V, andz∈V∗ such thata→ z∈ Q,
addadQe → dQez to P′;

6. for all Q⊆ cf(Pi) for somei = {1, . . . , t}, add.dQe → .〈 /0,ε〉 to P′;

7. add.〈 /0,ε〉 → $, $a→ a$ for everya∈ T, and $/→ ε to P′.

According to the definition ofP′, it can be shown that every successful derivation

in G′ is of the formS′ ⇒G′ . 〈 /0,ε〉S/ ⇒+G′ . 〈 /0,ε〉x/ ⇒G′ $x/ ⇒|x|
G′ x$/ ⇒G′ x such

that x ∈ T∗ and during.〈 /0,ε〉S/ ⇒+G′ . 〈 /0,ε〉x/, every sentential formw satisfiesw ∈
{.}H+{/}, whereH ⊆ V ′−{.,/,$,S′}. Next, let x ⇒⊕

G′ y denote a derivationx ⇒+G′

y such thatx= .〈 /0,ε〉u/, y= .〈 /0,ε〉v/, u,v ∈ V∗, and there is no other occurence of a
string of the form.〈 /0,ε〉z/, z∈V∗, duringx⇒+G′ y. Then, it holds that for everyu,v∈V∗,
.〈 /0,ε〉u/ ⇒⊕

G′ . 〈 /0,ε〉v/ if and only if u ⇒G v. Informally, this statement tells us that
every derivation stepu ⇒G v in G is simulated by a derivation.〈 /0,ε〉u/ ⇒⊕

G′ . 〈 /0,ε〉v/
in G′. The simulation consists of two phases. During the first, forward phase,G′ scans
u to get all nonempty substrings of lengthk or less. By repeatedly using productions
〈X,x〉y → y〈X∪sub(xy,k),y〉, X ⊆ M, x,y ∈ Vk, the occurence of a symbol with form
〈X,x〉 is moved towards the end of the sentential form. Simultaneously, the substrings of
u are collected inX. The second, backward phase simulates rewriting of all symbols inu
in parallel. From the above observations, the reader can prove thatS′ ⇒+G′ . 〈 /0,ε〉x/ if and
only if S⇒∗

G x, for all x∈V∗. Then, according to the form of successful derivations, we
get for eachx∈ T∗, S′ ⇒+G′ x if and only if S⇒∗

G x, and the lemma holds.

Inclusions established in Lemmas 2 and 3 result in the following theorem:



Theorem 1. SSC-E0L(1,2) = SSC-ET0L(1,2) = SSC-E0L= SSC-ET0L= RE.

Proof. From Lemmas 2 and 3,RE ⊆ SSC-E0L(1,2) andSSC-ET0L(r,s) ⊆ RE for any
r,s≥ 0. By the definitions, we haveSSC-E0L(1,2)⊆ SSC-ET0L(1,2)⊆ SSC-ET0Land
SSC-E0L(1,2)⊆ SSC-E0L⊆ SSC-ET0L. Thus, the theorem holds.

By analogy with Lemmas 1, 2, and 3, the reader can establish that propagating SSC-E0L
grammars of degree(1,2) generate the family of context-sensitive languages:

Theorem 2. CS= SSC-EPT0L(1,2) = SSC-EP0L(1,2) = SSC-EPT0L= SSC-EP0L.

Theorems 1 and 2 imply the following relationships of investigated language families:

CF
⊂

SSC-EP0L(0,0) = SSC-E0L(0,0) = EP0L= E0L
⊂

SSC-EPT0L(0,0) = SSC-ET0L(0,0) = EPT0L = ET0L
⊂

SSC-EP0L(1,2) = SSC-EPT0L(1,2) = SSC-EP0L= SSC-EPT0L= CS
⊂

SSC-E0L(1,2) = SSC-ET0L(1,2) = SSC-E0L= SSC-ET0L= RE.
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